

HyperNext Studio

Language Reference

v3.83

updated 31st December 2007

TigaByte Software 2007. http://www.tigabyte.com info@tigabyte.com

Contents

1 INTRODUCTION..5
WELCOME ...5
RESOURCES ...6

2 HYPERNEXT CREATOR ..7
USING HYPERNEXT CREATOR...7
RUNNING PROJECT ...8
COMPILING PROJECT...8
BUILD STACK ...8
BUILD CLASSIC APPLICATION ..8
BUILD OS X APPLICATION..9
BUILD WINDOWS XP/VISTA APPLICATION ...9
BUILDING FOR MACINTOSH ON WINDOWS XP/VISTA...9
SCRIPT EDITOR...9
MENU DESIGNER ... 10
ABOUT BOX ... 10
SPLASH SCREEN.. 11
SOUND LIBRARY.. 11
IMAGE LIBRARY... 11
MOVIE LIBRARY .. 11

3 HYPERNEXT DEVELOPER...13
PLUGINS... 13
USING DEVELOPER... 13
COMPILE PLUGIN ... 14
RUN PLUGIN .. 14
BUILD PLUGIN .. 14
PLUGIN NAMES ... 14
NEURAL NETWORKS.. 15

4 HYPERNEXT PLAYER...16
USING HYPERNEXT PLAYER ... 16
DISTRIBUTING STACKS.. 16

5 HYPERNEXT LANGUAGE..17
INTRODUCTION ... 17
FEATURES ... 17
LIMITATIONS.. 18
HYPERNEXT EVENTS ... 18
CONTROL STATEMENTS.. 20
USER INTERACTION .. 24
CLIPBOARD.. 28
FONTS AND SYSTEM ... 29
MAIN TIMER .. 30
RUNTIME ERRORS.. 31
COMPILE ERRORS .. 32
LOCALIZATION .. 33

6 VARIABLES...35
GLOBAL & LOCAL .. 35
SIMPLE... 36

COMPLEX .. 36
BOOLEAN .. 37
COLOURS.. 37

7 PROCEDURES & HANDLERS ..38
MAINCODE .. 38
CONTROL HANDLERS .. 39
PARAMETERS.. 39

8 OPERATIONS..40
GENERAL .. 40
BINARY .. 43
MATHS... 46
STRING .. 50
SORTING .. 55
DATE & TIME .. 58
ARRAYS.. 61

9 CARDS, WINDOWS & SCREENS..65
SCREEN & SCREENSHOTS .. 65
CARD COMMANDS.. 67

10 CONTROL TYPES...72
BUTTONS .. 72
FIELDS... 79

Field Events ... 85
CANVASES... 87

Canvas Events ... 92
TEXTS.. 95
CHECK BOXES .. 99
RADIO BUTTONS ... 103
POPUP MENUS .. 108
SCROLL BARS... 112
MOVIES.. 116
LISTBOXES .. 121

Listbox Events.. 124
SLIDERS ... 134
SCROLLBARS.. 137
PROGRESS BARS ... 141
TIMERS .. 144

11 CANVAS GRAPHICS...146
EXAMPLES ... 146

12 PLAYING SOUNDS & MUSIC..149
COMMANDS & FUNCTIONS.. 149

13 NOTE PLAYER ...151
COMMANDS & FUNCTIONS.. 151
INSTRUMENT LIST.. 155

14 PRINTING...158
COMMANDS & FUNCTIONS.. 159

15 FILES..164
GENERAL FILES... 164
FOLDER/FILE DETAILS... 170

BINARY FILES... 171
TEXT FILES.. 176
READING EXAMPLE ... 177
WRITING EXAMPLE ... 178
GRAPHICS FILES ... 179

16 NETWORKS...181
EASY NETWORKS... 181
WEB SERVER ... 189

17 RBSCRIPT...190
INTRODUCTION ... 190
EXAMPLE 1 .. 190
EXAMPLE 2 .. 190
RBSCRIPT GRAPHICS .. 194
NEURAL NETWORK INTERFACE ... 198

18 IMAGE BANKS...202
COMMANDS & FUNCTIONS.. 202

19 SPRITE ANIMATION ...208
COMMANDS & FUNCTIONS.. 208

20 SPRITE OBJECTS ..211
COMMANDS & FUNCTIONS.. 211

21 APPLESCRIPT ...214
22 APPLE EVENTS..217

EXAMPLE - EUDORA.. 217
EXAMPLE - STRING TX .. 218

23 SERIAL PORTS..219
24 MENUS..225
25 REGISTRATION...229
26 ENCRYPTION ..232

BLOWFISH EXAMPLE.. 233
27 RECEIVING EMAILS (POP3)..234
28 SENDING EMAILS (SMTP)...241
29 USB HID COMMS...245
30 LIGHTSTONE BIO-FEEDBACK..251

1 Introduction

Welcome

HyperNext Studio comprises three complementary applications that help you create,
develop and distribute your own software. Together they make up a powerful but
easy to use cross-platform programming system that allows hobbyists, students,
educators, in fact anyone, to quickly start building their own software.

Unlike most modern visual programming systems HyperNext has a very simple
interface comprising just a main design window and one tool bar. It also has three
easy modes of Design, Preview and Run so making it very easy for novice
programmers to use.

 Both HyperNext Creator and Developer have online help that makes exploring the
HyperNext language so easy and contains examples that can be copied and pasted
into scripts.

 HyperNext Studio is not only great for beginners but is powerful enough to produce
more complex software. With its flexible HyperNext scripting language, built-in
networking and internal fast RBscripting it offers lots of potential.

Installation

 Before installing HyperNext on your computer please ensure that you are using the
correct version. Currently there are versions for Windows XP, Macintosh OS X and OS
9. Please note the OS X (Carbon) versions are not intended to work on Macintosh OS
9.

Windows XP

To install HyperNext Studio simply run the installer and it will place the HyperNext
Studio folder into the Programs folder and the HyperNext Examples folder into your
douments folder.
 Apple Quicktime needs to be installed for full Hypernext functionality, for instance
displaying images on buttons.

Macintosh OS X & OS 9

To install HyperNext Creator, Developer or Player simply mount the Disk Copy image
on your desktop and then copy the HyperNext Studio folder to your preferred
location on your hard disk. On OS X it is best to drag the examples folder into your
documents folder.

Registering

HyperNext Creator and Developer will not offer full functionality until valid
registration details are entered into their registration screens. Please note that the
trial versions cannot be registered as they are simply restricted versions. Only the
version of HyperNext Studio as supplied by Direct Download is fully functional.

Resources

If you need further information or help with using HyperNext Creator, Developer or
Player then try our free HyperNext forum. Registration is and details can be found on
our web site. There are also projects and documentation on our web site.

2 HyperNext Creator

HyperNext Creator is a self contained and easy to use software creation program.
It has an easy to use interface and can build standalone applications as well as stacks
for our freeware HyperNext Player. HyperNext Creator allows full projects to be
developed and tested. It shares many general features of a typical developer
application in that it can save, load, and create new projects.

The main aspects of the Creator GUI(Graphical User Interface) are the Design(Card)
window, Tool Bar and Mode switcher. There is also an Editor for editing scripts
(handlers and procedures) attached to cards and controls.

There are three main modes in HyperNext Creator

1. Design - for creating a card and its layout - adding controls and editing
code.

2. Preview - displays a card as it would appear at runtime.

3. Run - for running the project within the Creator.

Using HyperNext Creator

Once HyperNext Creator has loaded it will display main two windows, the Design
window and the Tool Bar which together allow cards to be created and controls
placed upon them. A third global window called the Mode Switcher will also appear
and shows three buttons that allow quick movement between the Design, Preview
and Run modes. When switching from Design to Run mode the project is
automatically saved, and when switching back the saved project is reloaded.

Some frequently used shortcuts employing the Command Key(CK) plus another key
are:

 CK+D - Preview current card (to revert back use CK+D)

 CK+K - Compile and test project - it does not run the project.

 CK+R - Run the project. To end the run simple use CK+Q

 CK+Q - either Quits Creator OR ends a run and returns to Creator.

 CK+E – opens the Script Editor

 CK+S – Save

On Windows XP/Vista use the Control Key instead of the Command Key.

Running Project

The following sequence occurs when a project is run within the Creator

 (1) The project is automatically saved.

(2) An attempt is made to compile the project.

 (3) The Home card is then loaded and run.

Compiling Project

Compilation checks the whole project for errors and if any are found the Editor
window is opened and the first error line is highlighted.

Compiling a program is a much faster way to find compile time errors than running it.

Build Stack

The current project is compiled and a stack capable of running on the HyperNext
Player is built. The resulting stack will be placed in the current project folder and can
then be run on Windows XP, Macintosh OS X and Classic versions HyperNext Player.

When distributing a stack you must remember to bundle the project Data folder
along with it. The Data folder will contain any multimedia needed by the application.
The project Resource folder is only needed by the Creator while working on projects.

Build Classic Application

Builds a standalone application for OS Classic, that is OS 9.x.

The current project is compiled and a Classic standalone application is built. The
resulting application plus its accompanying data file are placed in the current project
folder.

When distributing a standalone application you must remember to bundle the project
Data folder along with it. The Data folder will contain any multimedia needed by the
application. The project Resource folder is only needed by the Creator while working
on projects.

Build OS X Application

The current project is compiled and an OS X (Carbon) standalone application is built.
The resulting application plus its accompanying data file are placed in the current
project folder.

When distributing a standalone application you must remember to bundle the project
Data folder along with it. The Data folder will contain any multimedia needed by the
application. The project Resource folder is only needed by the Creator while working
on projects.

Build Windows XP/Vista Application

The current project is compiled and a Windows (.exe) standalone application is built.
The resulting application plus its accompanying data file are placed in the current
project folder.

When distributing a standalone application you must remember to bundle the project
Data folder along with it. The Data folder will contain any multimedia needed by the
application. The project Resource folder is only needed by the Creator while working
on projects.

Building for Macintosh on Windows XP/Vista

In some respects Macintosh and Windows operating systems have quite different file
systems and therefore the built standalone for Macintosh is actually contained within
a binary file in order to ensure that its components are not separated before
reaching the target Macintosh computer. Once on the target Macintosh computer a
utility such as Stuffit Lite by Aladdin Systems can be used to extract the standalone.

Script Editor

HyperNext Creator and Developer each have an editor for creating and editing
scripts.

The Editor is used for editing the MainCode, AppleEvents, Menus and other handlers
such as those associated with cards and controls. It can be opened via the Edit menu
and for cards/controls via the Script button located in the Properties section of the
Toolbar. The editor is also automatically invoked when an error is found during
compilation.

The Editor can be opened quickly via the keyboard with the CK+E keys as mentioned
above.

At any one time the Editor can be in one of four editing modes:
 1 - Cards/Controls
 2 - MainCode
 3 - Specials such as Animation
 4 - User-defined Menu scripts.

Except for the MainCode mode, each mode can have several scripts, each associated
with a card, control, event handler or menu action. Each script has its own action
handler but can also have its own local procedures. The editor has four buttons for
working with each script and they have the following functions:-

 NEW - create a new handler.

 EDIT - edit the selected handler's name and parameters.

 DEL - delete the currently selected handler.

 CLOSE - save any changes and close the editor.

Note, when the editor is open and the program is compiled or run then all scripts are
saved to memory.
It is also possible to copy scripts from the online-help into the script editor.Both

Menu Designer

The Menu Designer allows user defined menu to be built and handlers defined for
each menu item. In addition command key shortcuts can be defined for each menu
item.

 The HyperNext language has a set of commands for manipulating menu items and
calling their associated handlers as described later in the Menu section.

WARNING - if you remove the Quit command from the Quit menu item then users will
not be able to quit your stack or built application.

About Box

This allows either text or an image to be displayed in an About Box which the user
can select via the About Menu of your stack or application.

 If no image is present then only the specified text will be displayed.

 An image can only be displayed if it has previously have been added to the image
library of the project. Checking the scale image check box will ensure that the
image’s proportions will be retained otherwise the image will completely fill the About
Box.

 The current About Box has a fixed size of 280x210 pixels.

Splash Screen

This allows either text or an image to be displayed in the Splash Screen which is the
first window visible when your stack or application starts up.

 If no image is present then only the specified text will be displayed.

An image can only be displayed if it has previously have been added to the image
library of the project. Unlike the About Box, the Splash Screen will automatically
change its size to match that of the image.

Sound Library

 Sounds can be made available in the Properties Window by first dragging and
dropping them onto the list box of the Sound Library window. These sounds can
then be assigned to buttons

 HyperNext currently supports the following sound formats and extensions:

 aif, aiff, au, midi, mp3, snd, wav

If you have a sound that the resource manager will not accept then try changing its
extension to one of the above and see if it will play in the sound preview.

Image Library

 Images can be made available in the Properties Window by first dragging and
dropping them onto the list box of the Image Library window. These images can then
be assigned to canvases.

 HyperNext currently supports the following image formats and their ewxtensions:

 jpg, jpeg, pict, pct, gif, png, tiff, tif and bmp

 If you have a image that the resource manager will not accept then try changing its
extension to one of the above and see if it will show in the image preview.

Movie Library

 Movies can be made available in the Properties Window by first dragging and
dropping them onto the list box of the Movie Library window. Any movie in the movie
resource manager can be assigned to a movie control.

Acceptable movies are:

 Quicktime, mov, avi, mpg, mpeg and swf

Note, only flash movies, i.e swf, of version 6 and lower are fully playable.

If you have a movie that the resource manager will not accept then try changing its
extension to one of the above and see if it will play in the movie preview.

3 HyperNext Developer

HyperNext Developer builds libraries/plugins for HyperNext Creator. Plugins can
provide extra functionality ranging from maths functions to complex algorithms such
as neural networks. Plugins are automatically encrypted so making it safer to deploy
and sell them to other HyperNext Studio users.

Plugins, once placed in the Plugins folder become available to any project being
developed by the HyperNext Creator.

Plugins

Plugins are like libraries as they consist of a self contained set of procedures. There
are no cards, controls or multimedia saved with a plugin although a plugin can access
cards and other controls throughout any stack or application containing it. Plugins
usually access controls on the focus card although because they have access to the
full range of HyperNext commands they can interact with controls on any card.

 Plugin development is generally undertaken by intermediate to advanced
programmers. The HyperNext language gives access to Rbscript, a fast High Level
language used in REALbasic by REAL Software. Unlike HyperNext, Rbscript is a
strongly typed language that due to its strict type checking runs extremely quickly.
For further details see the section on Rbscript towards the end of this guide.

 To help protect HyperNext Creator users from errant or malicious plugins, a plugin
cannot automatically initialise itself, any required Initialisation procedure must
therefore be called by the Creator stack/application.

 To protect plugin authors from having their plugins reverse engineered, HyperNext
Developer produces a pCode memory dump and then encrypts critical sections in
order to build the plugin. Even without encryption, pCode memory dumps are
themselves cryptic and non trivial to reverse engineer.

Using Developer

When HyperNext Developer is loaded its GUI layout is very similar to HyperNext
Creator’s. However, certain aspects of the Creator are missing from the Developer
because the Developer does not bundle cards and controls when it builds a plugin.

Many types of plugin can be tested by simply running them within the Developer but
some interactive types can only be fully tested within a Creator project.

If you need to test such interactive plugins then have both the Developer and
Creator open together. This arrangement works because the Creator only scans the
Plugins folder when it has to compile, run or build a stack/application.
When your plugin is ready, simply build it, then switch over to the Creator and
depending upon your needs either compile the Creator project or else run it. Next,
switch back to the Developer and further develop your plug-in.

Compile Plugin

Compilation checks the whole plugin for errors and if any are found the Editor window
is opened and the first error line highlighted.

As with the Creator, compiling a project is a much quicker way to find compile time
errors than actually trying to run it.

Run Plugin

The following sequence occurs when the plug-in is run.

 (1) The project is automatically saved.

 (2) An attempt is made to compile the plugin and its Home card.

 (3) If, successful, the Home card is loaded and then run.

 (4) You can then interact with and test your plugin.

Build Plugin

The current project is compiled and then the built plugin is placed into the Plugin
folder of the HyperNext Creator folder.

Plugin Names

If you have two different plugins each sharing the same name, then one of them
must have its name changed as clearly they both cannot reside together in the same

Plugins folder. It is probably easiest to rename the one with the fewest calls and then
drop it into the Plugins folder.

For instance if your built Plugin is called NewGraphics and has a procedure called
DrawCircle, the usual method of referring to it from within a Creator project is

 Call NewGraphics.DrawCircle

However, if you rename your plugin to NewGraphics1 you can simply refer to it by

 Call NewGraphics1.DrawCircle

Neural Networks

As neural networks are inherently computationally intensive they are best
implemented in Rbscript. However, in order to control and communicate with an
Rbscript neural network an interface is required. The later section on Rbscript covers
this interface.

Usually it will be best for plugin users if the plugin transparently manages the
interface between itself and the Rbscript neural network. Of course this causes more
work for the plugin developer but as described later HyperNext helps with the
interface implementation.

4 HyperNext Player

HyperNext Player is a freeware and self contained application that runs stacks
created by HyperNext Creator. Stacks can be as complex as any HyperNext Creator
built application but are far smaller in size so making it easier to distribute them by
email and the internet. Stacks are encrypted and cannot be modified so making them
an alternative way to deploy your software.

Stacks are not modifiable in the sense that their structure can change. However,
both the number of cards in a stack and the data can change as the user interacts
with it. For instance, a medical analysis system stack might grow over time as the
number of patient records builds up.

Note, unlike most applications, stacks automatically save their state whenever they
quit. Most of the time this feature makes life easier for stack users. However, the
automatic save can be overridden by the stack designer.

Using HyperNext Player

Either run the Player and use its File Open command to load the required stack or
else simply double click on the stack itself.

It is important to note that the Player usually saves its state before quitting. Unless
the stack designer chooses to disable this a stack user has no way to prevent this
happening. The Player saves links to images, texts and all variables, even local
variables. If need be, it is easy to create a stack employing its own pre-save handler
and then place a call to this handler in the File Quit handler.

Distributing Stacks

Stacks are much smaller than standalone applications because they do not contain
the overheads of a runtime engine, instead they rely on the HyperNext Player to
provide it.
Furthermore, stacks are cross-platform and a stack created on OS X can be run by
the OS 9 or Windows XP HyperNext Player and visa versa.

5 HyperNext Language

Introduction

 The HyperNext programming language is similar to Hypertalk as used by Hypercard.
Both languages have English-like statements and do not need their variables to be
designated as having a specific type. Variables might be thought of as named
locations within computer memory where data is stored. In HyperNext the vast
majority of variables are stored as strings.

 In most programming languages the type of a variable must be specified so that the
compiler will know in advance which type of data is to be stored and which
operations can be performed on that variable. There are many different types of
data, but two of the most basic types are numeric and text. Typed variables make
it much easier to develop and debug large programs as the compiler can do a great
deal of checking before the program is even run. However, beginner programmers
usually find it easier to get started if they can simply give the variables relevant
names and concentrate on giving commands in order to make things happen rather
than on being preoccupied with data types.

Features

 These are the main features of the HyperNext programming language.

 * English-like statements.

 * Software generally has a card based organization.

 * Variables are type-less and are all stored as strings(text).

 * Variables are either Global or Local.

 * Global procedures are declared in the MainCode section.

 * Control handlers and their procedures are local and hence protected.

 * Each control can have many local procedures.

 * Specific commands for numeric and string processing.

 * Variables can be single line, multi line, or array-like.

 * Runtime error reporting can be dynamically switched on or off.

Limitations

 The current version of the compiler has a number of limitations which will
immediately become apparent to more advanced programmers. However, except for
recursion, the limitations will be removed as the compiler is further developed.

 * No recursion in HyperNext although Rbscript fully supports recursion.

 * No user-defined functions although Rbscript supports user-defined functions

 * Restrictions on where Functions can be placed
 - not allowed within Boolean terms as in IF THEN, WHILE
 - not allowed as parameters

 Compile time error messages are sometimes terse.

HyperNext Events

In HyperNext certain events are handled by placing them into a queue and servicing
the queue on a first in first out basis. Example of events are:-

 Button Pressed, Canvas Mousedown Control Timer firing, Main Timer firing

 HyperNext’s event queue is managed by a one millisecond timer that tries to
process one event per millisecond but on slower machines or when events occur
which require heavy computation then this may not be possible. Apart from memory
limitations there is no limit to how long the event queue may become but once
several dozen events build up then the stack will become sluggish in responding to
button presses and timers etc.

 Note, AppleEvents have higher priority and so have their own event queue.

Notation Type

This refers to whether the keyword is C or F, a command or function respectively.

Name Type Description

EventsCountFN

F This function returns the number of unprocessed
events in the event queue.

 Put EventsCountFN into field 1

FlushQueue

C This disposes of all events in the event queue. If this
command is called from within a button script it will
not be executed until its button event enters the
event queue and is processed.

ControlTypeFN F Returns the number of the currently active control or
interrupt. Possible values are:-

 1 – Button
 2 – Canvas
 3 – Field
 4 – Main Timer
 5 – Menu Bar
 6 – Card Timer
 7 – Socket
 8 – Checkbox
 9 – Popup Menu
 10 – Radio Button
 11 – Sprite Surface
 12 – Progress Bar
 13 – Listbox
 14 – Slider
 15 - KeyDown

ControlIndexFN F Returns the index number of the currently active
control.

KeyDownFN F Returns 1 if the key matching the passed key code
was pressed but otherwise returns 0.

 Put KeyDownFN(code) into okay

KeyCharFN F Returns the character from the pressed key

 Put KeyCharFN into char

Control Statements

Name Description

Comments Lines preceded by the @ character are treated as comments by

the compiler, as shown below

@ *** Assign vars ***
Local x,y,z

Quit

This command will cause the stack or program to quit although
before quitting the state of the stack/program will be saved.

 Quit

QuitSave This command will cause a stack/program to quit but will only save
if the value is true. Use this command to disable automatic saving
when quitting.

 QuitSave(value)

GotoStackPath Loads a stack pointed to by the given absolute path name. The
save parameter specifies whether the current stack should be
saved before loading the target stack, if non zero then saving
occurs.

 GotoStackPath(homestack,saveflag)

If the path name is valid then the target stack will be loaded
otherwise an error is raised. This command works only within the
HyperNext Player and not when running a project within the
Creator, Developer or a Standalone application. The path name can
also be obtained using the FileGet or FileAsk commands.

GotoStackAsk Loads a stack pointed to by the path name returned from the file
dialog box. The save parameter specifies whether the current
stack should be saved, before loading the target stack, if non zero
then saving occurs. If the path name is valid then the target stack
loaded otherwise an error is raised. This command works only in
the Player and not when running a project within the Creator,
Developer or a Standalone application.

 GotoStackAsk(saveflag)

Call This command executes a user defined procedure or plugin
procedure.

 @ with no parameters
 Call MyBeep

 @ with parameters
 Call MyBetterBeep(x,y,z)

 @ Plugin with parameters
 Call Plugin23.MyBetterBeep(x,y,z)

GotoLabel This cause the program to jump to the labeled line. Gotos are local
and cannot jump outside the current handler/procedure.

If x=2 Then
 GotoLabel 1
Else
 Beep
End If

Label 1

If Then
Else
EndIf

This statement can evaluate multiple terms. Depending upon
whether the result is true or false then one of two branches will
be taken.

If x=2 Then
 Message ok
Else
 Message notok
End If

If Thens can be nested almost indefinitely.

Note 1
 To tell the compiler that text is being compared the $ operator is
used as follows.

 If res1$=res2 Then
 ...
 EndIf

Note 2
 Currently, if AND or OR are being used they must be the same,
either all AND or all OR. AND and OR cannot be mixed.

 @ a valid if then
 IF (x=2) AND (y=2) AND (z=2) AND (w=2) Then

 EndIf

 @ an invalid if then
 IF (x=2) AND (y=2) OR (z=2) AND (w=2) Then

 EndIf

Note 3
 The runtime engine uses short circuit evaluation so that if the
first term is false then the remaining terms are not evaluated.

For
EndFor
ExitFor

The FOR loop executes a series of statements. The loop can be
exited by using the EXITFOR statement.

Whether the loop goes up or down is dependent upon the step
variable. If the step variable is omitted then it is assumed to be
plus 1.

 For x=1 to 10 step 1.2
 ...
 put line x of field 1 into y
 If y=2 then
 ExitFor
 EndIf
 ...
 EndFor

Note, it is currently not possible to use procedure/function
parameter as one of the limit variables.

While (term)
EndWhile
ExitWhile

The WHILE loop executes a series of statements until the terms
evaluate to false.
The loop can be exited at any time by using the EXITWHILE
statement.

 While (x<10)
 ...
 put line x of field 1 into y
 If y=2 then
 ExitWhile
 EndIf
 ...
 EndWhile

DoEvents Allows background and other tasks to run. It also allows HyperNext
or HyperNext built applications and stacks to update their displays.
It can be called when a lot of processing is taking place so that the
user interface does not freeze up.

 DoEvents

Wait Forces the program to wait for the specified number of
milliseconds before moving on to the next instruction. When the
yield parameter is set to 1 then the program will give some time
to the user interface and background applications.

 Wait(yield,period)

 @ wait for 5 seconds
 Wait(1,5000)

User Interaction

Name Type Description

Beep C Simply plays the currently designated OS system

beep.

Message

C Displays a dialogue box with the specified
message.

 Message (‘hello’)

 Message (value)

Say

C Speaks the given text in the default voice. If text
is currently being spoken the message will be
added onto the end of the queue.

 Say text

 If speech is not installed on the operating
system then at runtime an error flag will be set
allowing your program to handle the situation.

SayNow C Speaks the given text in the default voice. If text
is currently being spoken it will be interrupted.

 SayNow text

 If speech is not installed on the operating
system then at runtime an error flag will be set
allowing your program to handle the situation.

Dialog C Presents a dialog box and returns a value
indicating which of two buttons was pressed. The
return value can be retrieved using the AnswerFN
function

There are three parameters. The first is the
message to be shown in the dialog box. The next
two are used as the text in the buttons of the
dialog box.

 Dialog mess,button1,button2
 Put AnswerFN into ans
 If ans=1 Then
 ...
 Else
 ...
 EndIf

AnswerFN F Returns the answer returned after a DialogBox

has been called. It indicates which of the two
buttons were pressed.

 Put AnswerFN into choice

ChoiceFN F Allows the programmer to ask the user to make a
choice between two values. The function passes
a question and two options in the form of a
dialog box to the user. The return value is the
option choosen by the user.

 Put ChoiceFN(question,option1,option2) into
choice
 If choice=option1 Then
 Dosomething1
 Else
 Dosomething2
 EndIf

ColorPicker

C Calls a colour picker so that the user can select a
colour.
The following example calls the color picker and
then sets the draw colour of Canvas 5 to that
returned by colour picker.

 Local r,g,b
 ColorPicker(message,r,g,b)
 SetDrawColor(5,r,g,b)

SetMouseCursor C Changes the mouse cursor to either a watch,
ibeam or arrow using the values 1, 2 or 3
respectively. The watch cursor is useful to let
users of your program know when it is busy and
not responding to user input.

 @ Set to watch
 SetMouseCursor 1

 @ Set to ibeam
 SetMouseCursor 2

 @ Set to arrow
 SetMouseCursor 3

MouseMove C Moves the mouse pointer to the specified x y
coordinates on the screen.

 MouseMove(x,y)

MousePress C Sends a left mouse button pressed signal to the

Operating System.

 MousePress

PressKeyReset C Resets the state of the simulated key press
routine clearing any error flag.

 PressKeyReset

PressKeySetShift C Sets the state of the Shift key to either up or
down using the values 0 or 1 respectively. After
the simulated key press the Shift key will
automatically return to the up position.

 PressKeySetShift

PressKeySetCommand C Sets the state of the Command key to either up
or down using the values 0 or 1 respectively.
After the simulated key press the Command key
will automatically return to the up position.

 PressKeySetCommand

PressKeySetControl C Sets the state of the Control key to either up or
down using the values 0 or 1 respectively. After
the simulated key press the Control key will
automatically return to the up position.

 PressKeySetControl

PressKeySetOption C Sets the state of the Option key to either up or
down using the values 0 or 1 respectively. After
the simulated key press the Option key will
automatically return to the up position.

 PressKeySetOption(state)

PressKeyCharAuto C Simulates a key press with only the ascii
character being specified. The routine
automatically tries to find the matching key code.

 PressKeyCharAuto(char)

PressKeyCharCode C Simulates a key press with both the ascii
character and key code being specified.

 PressKeyCharCode(char,code)

PressKeyAsciiAuto C Simulates a key press with only the ascii
character number being specified. The routine
automatically tries to find the matching key code.

 PressKeyAsciiAuto(cnumber)

PressKeyAsciiCode C Simulates a key press with both the ascii
character number and key code being specified.

 PressKeyAsciiCode(cnumber,code)

KeyPressErrorFN F Returns the last reported error. A value of 0
indicates no error occured. Error value
explanations are platform dependent and can be
found on the Microsoft and Apple web sites.
Calling this function resets the error value to
zero.

 KeyPressErrorFN

 Put KeypressErrorFN into errnumn

KeyConvertCodeFN F Takes a key code and returns the matching Ascii
character.

 KeyConvertCodeFN(integer)

 Put KeyConvertCodeFN(25) into char

KeyConvertAsciiFN F Takes an Ascii character and returns the
matching key code.

 KeyConvertAsciiFN(char)

 Put KeyConvertAsciiFN(c1) into kcode

KeyboardNameFN F Returns the name of the keyboard layout. For
instance English USA

 KeyboardNameFN

 Put KeyboardNameFN into ktype

Clipboard

These commands allow text to be copied to and from the clipboard using literals,
variables and fields.

Name Type Description

ClipboardFN

F Used for putting the text contents of the clipboard
into a variable or field.

 Put ClipboardFN into field 1

SetClipboard

C Used for putting a literal or the contents of a variable
into the clipboard.

 SetClipboard cvar

 SetClipboard 25

ClipboardFN

F Used for putting the contents of a field into the
clipboard.

 @ field 1
 SetClipboard 1

 @ field 3
 SetClipboard 3

 @ field fid
 SetClipboard fid

Fonts and System

This section contains adhoc system related commands.

Name Type Description

FontCountFN

F Returns the number of fonts currently installed in the
system.

 Put FontCountFN into nfonts

FontListFN F Returns the names of the currently installed fonts in
list form.

 Put FontListFN into fonts

PlatformFN F Returns the platform upon which the program is
currently running.

 1 - Mactel Rosetta
 2 - Mactel native
 3 - G3 PPC
 4 - G4 PPC
 5 - G5 PPC
 6 - Windows 32
 7 - Linux X86

 Put PlatformFN into option

Main Timer

This is a global timer that operates independently of whichever card is in focus. It can
be started/stopped, can execute its own script and change its own mode. It also
access to both global handlers and variables. The HyperNext language currently has
only one main timer and if more are needed they must be provided by setting up
some local variables to handle the different scenarios. Each card though can have its
own timer which work independently of other times.

 The Main Timer’s script can be edited via the Main Timer menu item of the Edit
menu.

 Note, the firing state of a timer cannot be saved and when a stack is first loaded all
timers are switched off and their periods set to a default value of 1000 ms.
Therefore if the Main Timer needs to be working immediately after loading it must be
setup early on, perhaps either in the MainCode startup script or a card’s open
handler.

 Timers are not yet supported in plugins. Although timers will work within the
Developer they will not be saved or incorporated into the built plugin.

Name Type Description

MainTimerSet

C This sets the main timer into one of three modes, off,
single and multi. In single mode when its count down
reaches zero the timer will fire just once and then enter
off mode. In multi mode it will fire and then restart its
countdown again.

 MainTimerSet mode,period

 mode : 0 = off
 1 = single
 2 = multi

 period: measured in milliseconds,
 i.e 1220 ms = 1.220 seconds

MainTimerOff

C This switches the main timer into off mode.

Runtime Errors

There are two types of runtime error. The first type are caused by a mistake in the
program or else by invalid input data so causing the program to fail. The second type
occurs when an unknown command is encountered as can arise when a stack created
on a more modern version of HyperNext Creator is run on an old version of
HyperNext Player.

Type one runtime errors all have their keywords starting with ERROR while the second
type all start with KEYWORD.

During runtime it is possible to either ignore a runtime error and try to continue or
else display an error message and let the code in the handler try to cope with it.
Error reporting is turned off by default because it can be quite annoying to a
program user if frequent dialogue boxes are displayed after a single error. Generally,
during program development it is best if the programmer turns on error reporting as
the error dialogs are quite explicit. However, when the program is released to users
the error reporting should be quietly controlled by the program itself and it should
display user-friendly error messages when appropriate.

Name Type Description

ErrorReport

C Sets error reporting either on or off.

ErrorReport(value)

ErrorClear

C Clears the error flag.

ErrorNumberFN F Returns the number of the last runtime error.

ErrorTypeFN F Returns the type of the last runtime error.

ErrorLineFN F Returns the line number of the last runtime error.
This may be helpful in debugging the program.

ErrorSourceFN F Returns the source line causing the error.

KeywordErrorReport C Sets the state of keyword error reporting. By default
this is set to silently ignore errors caused by
unknown keywords. The programmer can modify the
text of an error message dialogue box so making it
more user-friendly.

 KeywordErrorReport(number)

 KeywordErrorReport(3)

 where number can be
 0 - Silent, no action occurs.

 1 - Beep, beeps when an error occurs.
 2 - Dialogue and Continue, displays an error
message and continues.
 3 - Dialogue and Quit, displays an error message
and quits.

KeywordErrorMessage C Sets the error message seen by the user. The default
message simply gives a program line number, the
source line and the type of error. The user-defined
message can be multi-line text.

 KeywordErrorMessage(text)

 KeywordErrorMessage(mess)

KeywordErrorRaise C This raises an error allowing the programmer to
modify the programs reaction to possible errors and
to produce a user-friendly dialogue message.

 KeywordErrorRaise

KeywordErrorFN F Returns the current error state. If the result is zero
then no error occurred, if 1 then it was caused by an
unknown command, else if 2 by an unknown function.
Once the KeywordErrorFN function is called then the
error state is reset back to zero.

 KeywordErrorFN

 Put KeywordErrorFN into etype

KeywordErrorSettingFN F Returns the state of the keyword error reporting.
When 0 then error reporting is silent, 1 will beep on
an error, 2 is in dialogue box continue mode, and 3 in
dialogue box quit mode.

 KeywordErrorSettingFN

 Put KeywordErrorSettingFN into estate

Compile Errors

When the compiler encounters an error it will open the script editor and indicate the
line and a message detailing the possible error.

Localization

The default language used in HyperNext is English but both stacks and applications
can be localized to work in another language. This localisation must be set in the
Creator project before the software is built. It is also possible to define data within a
plugin for a specific localization but the localized text must be used in a project set
up specifically for that language otherwise it will probably be displayed as garbage
characters.

The following can be localized:-
 Controls - buttons, fields, texts, canvases(indirectly via DrawText)
 Menu titles and items.
 Message and dialog boxes.
 Text files can save/load in correct encoding.
 String literals inside the script editor.
 Variables store correct encoding.
 About box.
 Splash screen.

HyperNext Creator

To start a localized project the default font should be set in the Preferences. The
default font is used in editing text and setting controls etc.

Example - Japanese

Assumes that you have just created a new project.

(1) From the Edit menu select the Preferences menu item.

(2) From the settings box select the Localization tab.

(3) From the font pop-up menu select Osaka.

(4) Close the settings box.

From now on this project will use Osaka as its default font for controls etc.

HyperNext Developer

To develop a localized plug-in open the Developer, create a new project and then
follow these steps

Example - Japanese

(1) From the Edit menu select the Preferences menu item.

(2) From the settings box select the Localization tab.

(3) From the font pop-up menu select Osaka.

(4) Close the settings box.

From now on this project will use Osaka as its default font for controls etc.

6 Variables

Variables are used to store numbers, text, lists of names etc. In HyperNext, unlike
most other programming languages, all variables are basically text, often referred to
as strings, and generally the compiler makes no distinction between data types.

 All variables must be declared, either within the local procedure/handler otherwise
the compiler will flag an error. However, variables can be used before they are
declared , something that can make a procedure algorithm easier to follow.

Global & Local

Name Description

Global This is used to declares global variables. Such variables are visible

anywhere within the program.

 Global x,y

Note, by default, a stack or standalone saves all global variables
before quitting.

Local This is used to declare local variables. Such variables are only
visible within the current procedure and retain their value even
after the procedure has exited.

 Local a,b,c

Note, by default, a stack or standalone saves all local variables
before quitting.

 Variables must be either Global or Local. Global variables can be accessed from any
handler/procedure within a stack whereas Local variables can only be accessed from
within the handler/procedure in which they are declared. Plugins can also have global
variables so that data can be passed to and from the plugin.

 The following procedure shows how both global and local variables are declared.

 Local x1,y1

 Global name,job
 Local z,w

 A variable name must start with a letter and it does not matter whether lower or
upper case letters are used

 name name1 name2

 name Name

Note
Before a HyperNext stack quits it usually save all variables, both global and local,
including text stored in field controls. This automatic save can be disabled though.

Simple

A simple variable contains a piece of text with no <Carriage Return> characters.
Here, a Carriage Return is denoted by CR.

 For example a variable might contain a number, a set of numbers separated by
commas, or a sentence.

Complex

In HyperNext a variable is considered complex when it contains one or more CR
characters and then can be treated as a list or an array.

 For instance a variable might contain a list of three lines such as

 Apples<CR>
 Oranges<CR>
 Bananas

 Usually the <CRs> are not displayed as HyperNext functions/commands operate
transparently on lists.

Boolean

A Boolean variable can be either true or false. HyperNext, in common with most
programming languages uses 0 to represent false and 1 to represent true. However,
when parameters to HyperNext predefined procedure/function are expected to be
Boolean, any non zero value will be interpreted as true by that procedure/function.

Colours

Colors in HyperNext have three components - red, green and blue.
 Their component values range from 0 to 255.
 Black equals 0,0,0 and white equals 255,255,255

For example in setting the paper colour of field 1 to red the following could be used.

 Local r,g,b
 Put 255 into r
 Put 0 into g
 Put 0 into b
 FldPaperColor(1,r,g,b)

 or more simply

 FldPaperColor(1,255,0,0)

7 Procedures & Handlers

A procedure is a self contained set of instructions that usually has local variables
while a handler is just another name for a procedure that is attached to a control
such as a card, button or other control. In HyperNext, handlers can have an
unlimited number of local procedures and can also access global procedures declared
in the MainCode block and variables declared as global.

HyperNext has various blocks of code such as MainCode, AppleEvents, Main Timer, as
well as the handlers that are attached to controls.

There are two main classes of procedure, procedures that simply perform some
action and procedures which perform an action and then return a value. In
HyperNext, as in most languages, a procedure that returns a value is called a
Function. In HyperNext there are hundreds of functions although user defined
functions are currently NOT supported.

 The method of using procedures and functions are quite different. For instance in
the following, MyBeep is a procedure that plays a sound, whereas MyBeepFN plays a
sound and returns a number that is subsequently placed into the variable num.

 Call MyBeep

 Put CountFN into num

MainCode

This is where global procedures are declared and defined. Your global variables can
also be declared here and perhaps even given starting values although actually global
variables need only be declared in the handler which uses them.

The MainCode block is a convenient place for declaring your global variables as it is
easier to keep track of them here especially when a program becomes quite large
with many global variables.

The MainCode block includes a procedure called Startup that runs before any cards
are loaded and is intended to include initialisation code.

The following procedures are visible in the left hand list of the editor. When a stack
or application is first run they are executed in the order below.

???? - used by HyperNext and cannot be modified.

Constants - for future use when HyperNext allows constants

Variables - where global variables can be declared along with suitable comments.

StartUp - any instructions placed here will be executed before the first card is
loaded. Calls to other global procedures can be made from here.

Control Handlers

Procedures within controls are local to that control and cannot be accessed from
outside that control.

Parameters

Parameters are variables that are passed directly to the procedure/function when it
is called. For instance a DrawRectangle procedure might need both the start
coordinates and the dimensions as below

 Call DrawRectangle(x,y,width,height)

 or the HyperNext function CardActiveFN

 Put CardActiveFN(12) into state

Currently in HyperNext variables are passed by value which means that the value of
the variable is protected and cannot be changed by the procedure/function called. If
it is essential that the value of the parameter be changed by the procedure then the
only option is to use a global variable and declare it within that procedure.

Parameters have a further restriction placed upon their usage - within the target
procedure they cannot themselves be passed as a parameter to another procedure
deeper down the call chain.

8 Operations

This section lists and details keywords associated with the processing of variables.

General

Name Type Description

Put C The Put command is probably the most powerful

command in HyperNext as it has a number of
variations to cope with simple variables holding one
line or more complex variables acting as lists and
arrays.

There are three basic type of Put -

 (1) Put x into y (Puts a variable directly into
another)

 Put x into field 1

 Put x into line 23 of field 1

 Put w into z

 (2) Put x before y (Puts a variable before the
contents of the target variable)

 Put x before line 23 of field 1

 (3) Put x after y (Puts a variable after the contents
of the target variable)

 Put x after line 23 of field 1

There are also variations to deal with chunks of text.
A chunk can be a single character, a word or a line.

 Put char 3 of x into char 7 of field 1

 Put word 3 of x into word 7 of field 1

 Put line 3 of x into line 7 of field 1

At the present time HyperNext cannot cope with
more complex Puts, eg

 Put word 2 of line 7 into ...

will cause the compiler to reject the statement.

Add C Adds one variable to another. Values can be doubles,
singles or integers.

 Add x to y

Subtract C Subtracts one variable from another. Values can be
doubles, singles or integers.

 Subtract x from y

Multiply C Multiplies one variable by another. Values can be
doubles, singles or integer.

 Multiply x by y

Divide C Divides one variable by another. Values can be
doubles, singles or integers.

 Divide x by y

Decrement C Decrements a variable or field by one. Values can be
doubles, singles or integers.

 Decrement x

 Decrement field 12

Increment C Increments a variable or field by one. Values can be
doubles, singles or integers.

 Increment x

 Increment field 12

Clear C Clears a target variable or field. Variables can be
global or local.

 Clear x

 Clear field 1

Set C Sets the variable or field to 1.

 Set x

 Set field 1

Reset C Sets the variable or field to 0.

 Reset x

 Reset field 1

SwapLinesVar C Swaps two lines in a target variable. The variable can
be either local or global.

 SwapLinesVar data,10,15

SwapLinesField C Swaps two lines in a target field.

 SwapLinesField 1,10,15

DeleteLinevar C Deletes the specified line in the target variable. All
higher lines are moved down by one line.

 DeleteLineVar data,5

DeleteLineField C Deletes the specified line in the target field. All higher
lines are moved down by one line.

 DeleteLineField 1,5

Binary

These allow the underlying binary digits or bits within a number to be taken into
account in an operation.

Name Type Description

BinFN

F Returns a binary version of the given number.
The result is expressed in all zeros and ones.

 Put BinFN(num) into res

BinFormatFN F Returns a binary version of the given number.
The result is expressed in all zeros and ones and
can be padded with leading zeros using the width
parameter

 Put BinFormatFN(num,width) into res

BitAndFN

F Returns the result of the AND operation on two
given numbers.

 Put BitAndFN(num1,num2) into res

BitOrFN

F Returns the result of the OR operation on two
given numbers.

 Put BitOrFN(num1,num2) into res

BitXorFN

F Returns the result of the XOR operation on two
given numbers.

 Put BitXorFN(num1,num2) into res

BitOnesFN

F Returns the result of a ones complement
operation on the given number.

 Put BitOnesFN(num) into res

BitLeftFN

F Returns the result of a shift left operation on the
given number. The number is shifted left by
nshift bits and the field width is specified by
fwidth.

 Put BitLeftFN(num,nshift,fwidth) into res

BitRightFN

F Returns the result of a shift right operation on
the given number. The number is shifted right by
nshift bits and the field width is specified by
fwidth.

 Put BitRightFN(num,nshift,fwidth) into res

HexFN

F Returns a hexadecimal version of the given
number.

 Put HexFN(num) into res

OctFN

F Returns an octal version of the given number.

 Put OctFN(num) into res

BinToIntegerFN F Converts a string of binary digits into an integer.
The binary digits are all zeros and ones.

 Put BinToIntegerFN(bnum) into res

ByteToHexFN F Returns a hexadecimal version of the given byte.

 Put ByteToHexFN(bnum) into res

HexToByteFN F Returns a byte version of the given hexadecimal
number.

 Put HexToByteFN(hnum) into res

ZipCompressFN F This function takes data and returns it in zip
compressed form. It has 10 levels of
compression ranging from zero to 9.

 ZipCompressFN(data,level)

 @ Fully compress data
 Put ZipCompressFN(svar,9) into res

ZipDecompressFN F This function takes zip compressed data and
returns it in decompressed form. It requires an
allocation of buffer space of at least 10 times,
usually 10 is sufficent.

 ZipDecompressFN(zippeddata,buffersize)

 Put ZipDecompressFN(svar,10) into res

Base64EncodeFN F This function takes data and returns it in Base64
form. It us useful when binary data needs
converting to a safe form for transmission across
a network.

 Base64EncodeFN(data)

 Put Base64EncodeFN(svar) into res

Base64DecodeFN F This function takes Base64 format data and
returns it in decoded form. It us useful when an
email attachment or other network data needs
decoding.

 Base64DecodeFN(b64data)

 Put Base64DecodeFN(svar) into res

QPEncodeFN F This function takes data and returns it in Quote
Printable form. QP form is an encoding using
ASCII characters for non ASCII text and is often
used in email transfers.

 QPEncodeFN(data)

 Put QPEncodeFN(svar) into res

QPDecodeFN F This function takes Quote Printable format data
and returns it in decoded form. It us useful when
QP email data needs decoding.

 QPDecodeFN(QPdata)

 Put QPDecodeFN(svar) into res

Maths

These are the mathematical keywords and functions supported by HyperNext. Most
of them treat the numbers involved as extended floating point. Both the precision of
the calculations and the length of the output string can be changed.

Name Type Description

IsNumericFN F Returns 1 if the given string is numeric else returns 0.

 Put IsNumericFN(s1) into res

MathsSetPrecision C Sets the number of bits used for processing each
floating point number. The default is 64 bits.
Normally the precision is 4 times the output length.

 MathsSetPrecision(100)

MathsSetOutput C Sets the number of characters used for holding the
output of a floating point operation. The default is 16
characters.

 MathsSetOutput(25)

MathsPrecisionFN F Returns the number of bits used for processing each
floating point number.

 Put MathsPrecisionFN into nbits

MathsOutputFN F Returns the number of characters used for holding
the output of a floating point operation.

 Put MathsOutputFN into nchars

AbsFN

F Returns the absolute value of the given number.

 Put AbsFN(num) into res

AcosFN

F Returns the arccosine of the given number with the
result being in radians.

 Put AcosFN(num) into res

AsinFN

F Returns the arcsine of the given number with the
result being in radians.

 Put AsinFN(num) into res

AtanFN F Returns the arctan of the given number with the

 result being in radians.

 Put AtanFN(num) into res

Atan2FN

F Returns the arctangent of two points x and y with the
result being in radians.

 Put Atan2FN(x,y) into res

CeilFN

F Returns the given number rounded up to the nearest
integer.

 Put CeilFN(num) into res

CosFN

F Returns the cosine of the given number with the
given number being in radians.

 Put CosFN(num) into res

DivFN

F Returns the result of integer division between two
numbers.

 Put DivFN(num1,num2) into res

ExpFN

F Returns the exponential of the given number. That is
e raised to the power of the given number.

 Put ExpFN(num) into res

FloorFN

F Returns the the given number rounded down to the
nearest integer.

 Put FloorFN(num) into res

LogFN

F Returns the natural logarithm of the given number.

 Put LogFN(num) into res

MaxFN

F Returns the maximum of two given numbers.

 Put MaxFN(num1,num2) into res

MinFN

F Returns the minimum of two given numbers.

 Put MinFN(num1,num2) into res

ModFN

F Returns the remainder of the division between the
two given numbers.

 Put ModFN(num1,num2) into res

PiFN

F Returns the value PI.

 Put PiFN() into res

PowerFN

F Returns the given number raised to the given power.

 Put PowerFN(num,pnum) into res

RndDbFN

F Returns a double random number:

 0 <= r < 1

 Put RndDbFN into res

RndFN

F Returns an integer random number within the range
specified by the two numbers:

 num1 <= r <= num2

 Put RndFN(num1,num2) into res

RoundFN

F Rounds the given number to the nearest integer.

 Put RoundFN(num) into res

SeedFN

F Returns the current random seed.

 Put SeedFN into res

SetSeed

P Sets the seed of the HyperNext random number
generator where seed is an integer.
If seed is zero then the current time is used.

 SetSeed num

SignFN

F Returns the sign of the given number. The results can
be, -1, 0, or 1 if the given number is negative, zero or
positive respectively.

 Put SignFN(num) into res

SinFN

F Returns the sine of the given number with the given
number being in radians.

 Put SinFN(num) into res

SqrtFN

F Returns the square root of the given number.

 Put SqrtFN(num) into res

TanFN

F Returns the tangent of the given number with the
given number being in radians.

 Put TanFN(num) into res

TruncFN F Truncates the fractional part of the given number.

 Put TruncFN(num) into res

String

These keywords and functions all operate upon strings. Strings are considered to be
just sequences of characters.

Name Type Description

Append

C Appends the first text to the end of the second text.

 Append s1 onto s2

ReplaceOne

C Replaces the first specified word in the given text with
the second specified word. Word1 and word2 do not
have to be single words, they can be any text.

 ReplaceOne word1 with word2 in source

ReplaceAll

C Replaces all occurrences of the specified word in the
given text with the second specified word. Word1 and
word2 do not have to be single words, they can be any
text.

 ReplaceAll word1 with word2 in source

AscFN

F Returns an integer representing the first character of
the given text.

 @ If s1 contains an A then res equals 65
 Put AscFN(s1) into res

ChrFN

F Returns the character value of the given number.

 @ Put a space into s1
 Put ChrFN(32) into s1

ChunksFN

F Counts the number of chunks in the specified string
that are separated by the specified separator. The
separator can be a space, comma, full stop etc and can
be specified by quotes or a by a variable.

 Put ChunksFN(s1,sep) into ncount

EndLineFN

F Returns the the end of line character for the specified
system

 1 - Macintosh - Chr(13)
 2 - Unix - Chr(10)
 3 - Windows - Chr(13) +Chr(10)

FindWordFN

F Returns the position of the given word assuming that it
can be separated from other word by punctuation.

 Put FindWordFN(source,word) into wpos

FormatFN

F Returns a text version of a given number. The number
format used is specified in the System Number Control
Panel but the text is formatted according to the format
specifiers given below. The format string can be made
up of three separate specifiers, for positive, negative
and zero numbers respectively.

 Character Description
 # If the digit is present it is displayed.
 0 As for # but if the digit is not present
 then a 0 is displayed.
 . The position of the decimal point.
 , Specifies that the number should be
 displayed with thousand separators.
 % Displays the number multiplied by
100.
 + If the number is positive a + sign is
 displayed on the left of the
 number and if negative a - sign is
 displayed.

 If the number is negative a - sign is
 displayed on the left of the number,
 otherwise nothing.

 E or e The number is displayed using
scientific
 notation.
 \char The character following the backslash
is
 displayed.
 (An open parenthesis is displayed.
) A closed parenthesis is displayed.

Examples
 Format Number Output
 #.## 3.142 3.14
 #.0000 3.143 3.1420
 #% 0.35 35%

 Put FormatFN(number,’#.##’) into output

InStrFN

F Returns the position of the first occurrence of the
specified word in the given text and starts the search
at the specified position. Word does not have to be a
single word, it can be any text.

 Put InStrFN(pos,source,word) into wpos

LeftFN

F Returns the left n characters of the given text.

 Put LeftFN(s1,n) into s2

LenFN

F Returns the number of characters in the given text.

 Put LenFN(s1) into slen

LinesFN

F Returns the number of lines in the given text where the
line separators are Chr(13) as used on the Macintosh.

 Put LinesFN(s1) into nlines

LowerFN

F Returns the lower case version of the given text.

 Put LowerFN(s1) into s2

LtrimFN

F Returns the given text with all left leading spaces
removed.

 Put LtrimFN(s1) into s2

MiddleFN

F Returns the text comprising n characters from position
p of the given text.

 Put MiddleFN(source,p,n) into s2

NthChunkFN

F Returns the nth chunk from the given text using the
given separator.

 Put NthChunkFN(source,sep,place) into res

NStringsFN F Returns the specified number of strings concatenated
together.

 Put NStringsFN(source,count) into res

ReplaceEndsFN

F Returns the given text with all line endings changed to
the new line ending. It will automatically find Macintosh,
Unix and Windows line endings and change them as
appropriate. The end type specifies the ending to be
used.

 @ Change to UNIX
 Put ChrFN(10) into end type
 Put ReplaceEndsFN(s1,end type) into s2

 Line endings
 1 - Macintosh - Chr(13)
 2 - Unix - Chr(10)
 3 - Windows - Chr(13) +Chr(10)

RightFN

F Returns the n rightmost characters from the given text.

 Put RightFN(s1,n) into s2

StrCompFN

F Returns the resulting comparison of two texts. If ctype
is 0 then case-sensitive comparison is used and if 1
then case is ignored.

 Put StrCompFN(s1,s2,ctype) into res

 Results
 -1 string 1 < string 2
 0 string 1 = string 2
 1 string 1 > string 2

TitleFN

F Returns the titled version of the given text. This
converts all characters in the text to lowercase and
then converts the first character of each word to
uppercase.

 Put TitleFN(s1) into s1

TrimFN

F Returns the given text with both left and right spaces
removed.

 Put TrimFN(s1) into s1

UpperFN

F Returns the uppercase version of the given text.

 Put UpperFN(s1) into s1

ValFN

F Returns the text representation of the given number
with the separators being as defined in the System
Numbers Control Panel. This recognizes binary, octal
and hexadecimal using the ampersand sign using &b,
&O and &H respectively.

 Put ValFN(num) into s1

WordsFN

F Returns the number of times the specified word occurs
in the given text. The word can be any text and need
not be delimited by spaces.

 Put WordsFN(text,word) into nwords

AscBFN F Returns an integer representing the first character of
the given byte text.

 @ If s1 contains an A then res equals 65
 Put AscBFN(s1) into res

ChrBFN F Returns the byte string value of the given number.

 @ Put a space into s1
 Put ChrBFN(32) into s1

InStrBFN F Returns the position of the first occurrence of the
specified word in the given byte text and starts the
search at the specified byte position. Word does not
have to be a single word, it can be any text.

 Put InStrBFN(pos,source,word) into wpos

LeftBFN F Returns the left n bytes of the given text.

 Put LeftBFN(s1,n) into s2

LenBFN F Returns the number of bytes in the given text.

 Put LenBFN(s1) into slen

MiddleBFN F Returns the text comprising n bytes from position p of
the given text.

 Put MiddleBFN(source,p,n) into s2

RightBFN F Returns the n rightmost bytes from the given text.

 Put RightBFN(s1,n) into s2

LineEndingFN F Returns the the end of line character for the current
platform

 Macintosh - Chr(13)
 Unix - Chr(10)
 Windows - Chr(13) +Chr(10)

 @ Example
 Put LineEndingFN into sep

Sorting

 Both variables and fields can have their contents sorted in a number of ways

 Depending upon the structure of the source contents sorting can be carried out
using either lines or words. The type of sort can also be specified, such as text,
numeric or date.

 An error flag can be raised if the sort data is incompatible with the specified sort
format. For instance if the data does not have a valid date format when type date is
specified.

Name Type Description

SortLinesVar

C This assumes that the data in the specified variable
is organized with a line format, as when separated
by Chr(13), the normal format in HyperNext.

 SortLinesVar sdata,type,direction

where
 type:
 1 - text,
 2 - numeric,
 3 - date
 direction:
 1 - descending,
 2 - ascending.

SortLinesField

C This assumes that the data in the specified field is
organized with a line format, that is every line is
separated by Chr(13), the normal format in
HyperNext.

 SortLinesField sdata,type,direction

where
 type:
 1 - text,
 2 - numeric,
 3 - date
 direction:
 1 - descending,
 2 - ascending.

SortWordsVar

C This assumes that the data in the specified variable
is organized with a line format and that each line is

composed of a number of words separated by a
specified separator. Each line is separated by
Chr(13), the normal format in HyperNext. The
number of words in each line should be the same and
the word or column that acts as the key is specified
by wnum below.

 SortWordsVar src,typ,dir,sep,wnum

where
 type:
 1 - text,
 2 - numeric,
 3 - date
 direction:
 1 - descending,
 2 - ascending.
 separator eg , (comma)
 wnum eg 6 for column 6

Example
 This example takes the parameters from various
fields.

Local src,typ,dir,sep,wnum

 Put field 5 into src
 Put field 2 into typ
 Put field 3 into dir
 Put ',' into sep
 Put field 6 into wnum

 SortWordsVar src,typ,dir,sep,wnum

 Put src into field 5

SortWordsField

C This assumes that the data in the specified field is
organized with a line format and that each line is
composed of a number of words separated by a
specified separator. Each line is separated by
Chr(13), the normal format in HyperNext. The
number of words in each line should be the same and
the word or column that acts as the key is specified
by wnum below.

 SortWordsFieldB src,typ,dir,sep,wnum

where
 type:
 1 - text,

 2 - numeric,
 3 - date
 direction:
 1 - descending,
 2 - ascending.
 separator eg , (comma)
 wnum eg 6 for column 6

Example
 This example takes the parameters from various
fields.

 Local src,typ,dir,sep,wnum

 Put 5 into src
 Put field 2 into typ
 Put field 3 into dir
 Put ',' into sep
 Put field 6 into wnum

 SortWordsField src,typ,dir,sep,wnum

Date & Time

These are a related set of commands and functions for setting and reading dates and
times.

The central value representing a date is the total number of seconds since a specific
date namely January 1, 1904.

 To use a date one can create a date value using the DateTotalSecsFN function and
then modify the value using the DateSet commands. Various portions of the date
such as month, minute etc can also be accessed.

Name Type Description

TicksFN

F Returns the number of ticks since the computer
was started. Each tick is 1/60th of a second.

 Put TicksFN into tnow

MicroSecondsFN

F Returns the number of microseconds since the
computer was started. A microsecond is
1/1000000th or one millionth of a second.

 Put MicroSecondsFN into tnow

DateNowFN

F Creates a date value for the current date and time.

 Put DateNowFN into totSecs1

DateTotalSecsFN

F This parses a date string and returns the total
number of seconds representing that date. If an
invalid date is passed to the function then an
empty value will be returned. Once the date is set
the actual time on that date can be set using the
DateSet commands.

 Put DateTotalSecsFN(dvar) into date1

 Valid formats for dvar are:
 15/10/2004, 15/10/04, 15Oct2004,

DateAbbrevDateFN

F Takes a variable holding the total number of
seconds and returns an abbreviated date such as
Mon, May 5, 2003

 Put DateAbbrevDateFN(tsecs) into adate

DateDayOfWeekFN F Takes a variable holding the total number of

 seconds and returns the corresponding day of the
week in integer form where Sunday is 1, Monday is
2, ... and Saturday is 7.

 Put DateDayOfWeekFN(tsecs) into adate

DateDayOfYearFN

F Takes a variable holding the total number of
seconds and returns the corresponding day of the
year in integer form, for example day 285.

 Put DateDayOfYearFN(tsecs) into adate

DateLongDateFN

F Takes a variable holding the total number of
seconds and returns a date having the form
Tuesday, May 6, 2003

 Put DateLongDateFN(tsecs) into adate

DateShortDateFN

F Takes a variable holding the total number of
seconds and returns a date having the form
6/5/2003

 Put DateShortDateFN(tsecs) into adate

DateLongTimeFN

F Takes a variable holding the total number of
seconds and returns a time having the form
7:15:21 PM

 Put DateLongTimeFN(tsecs) into atime

DateShortTimeFN

F Takes a variable holding the total number of
seconds and returns a time having the form 7:15
PM

 Put DateShortTimeFN(tsecs) into atime

DateWeekOfYearFN

F Takes a variable holding the total number of
seconds and returns an integer for the week that
the date falls on, for instance 31

 Put DateWeekOfYearFN(tsecs) into adate

DateDayFN

F Takes a variable holding the total number of
seconds and returns the day portion of that date.

 Put DateDayFN(tsecs) into adate

DateHourFN

F Takes a variable holding the total number of
seconds and returns the hour portion of that date.

 Put DateHourFN(tsecs) into adate

DateMinuteFN

F Takes a variable holding the total number of
seconds and returns the minute portion of that
date.

 Put DateMinuteFN(tsecs) into adate

DateMonthFN

F Takes a variable holding the total number of
seconds and returns the month portion of that
date.

 Put DateMonthFN(tsecs) into adate

DateSecondFN

F Takes a variable holding the total number of
seconds and returns the second portion of that
date.

 Put DateSecondsFN(tsecs) into adate

DateYearFN

F Takes a variable holding the total number of
seconds and returns the year portion of that date.

 Put DateYearFN(tsecs) into adate

DateSetDay

C Sets the day portion of the given date.

 DateSetDay adate,1

DateSetHour

C Sets the hour portion of the given date.

 DateSetHour adate,13

DateSetMinute

C Sets the minute portion of the given date.

 DateSetMinute adate,45

DateSetMonth

C Sets the month portion of the given date.

 DateSetMonth adate,11

DateSetSecond

C Sets the second portion of the given date.

 DateSetSecond adate,23

DateSetYear

C Sets the year portion of the given date.

 DateSetYear adate,2003

Arrays

Although the list based data structures in HyperNext are fine for most problems
there are times where an array is a more natural and efficient representation. Arrays
are named at creation where the name is expected to be a string although it can be
1, 2 etc.

Array values are still strings so that they can operate seamlessly with HyperNext lists
and variables.
Both row and column subscripts start at 1 just as other lists in HyperNext do.

Warning, unlike global and local variables, arrays are not saved when HyperNext quits.
However, as they are strings they can be saved using the text file commands.

Name Type Description

ArrayCreateFN

F Creates a named array having the specified
number of rows and columns.

 ArrayCreateFN(aname,nrows,ncolumns)

 Put ArrayCreateFN(name,10,20) into okay

 Function return numbers -
 0 - successfully created.
 1 - ** not used **
 2 - name already exists
 3 - ** not used **
 4 - insufficient memory.

ArrayResizeFN

F Resizes the named array to the specified number
of rows and columns. The data within the resized
array remains unchanged except for those
elements lost.

 ArrayResizeFN(aname,nrows,ncolumns)

 Put ArrayResizeFN(name,100,200) into okay

 Function return numbers -
 0 - successfully resized.
 1 - name not found
 2 - ** not used **
 3 - ** not used **
 4 - insufficient memory.

ArrayDeleteAll

C This simply deletes all arrays from memory and
reclaims their storage space.

 ArrayDeleteAll

ArrayExistsFN

F Returns 1 if the named array exists otherwise it
returns 0.

 ArrayExistsFN(aname)

 Put ArrayExistsFN(name) into num

ArrayBytesStoredFN

F Returns the number of bytes used by the named
array.

 ArrayBytesStoredFN(aname)

 Put ArrayBytesStoredFN(name) into num

ArrayCountFN

F Returns the number of arrays is existance.

 ArrayCountFN

 Put ArrayCountFN into num

ArrayStatsFN

F Returns a list detailing the arrays in existance. The
stats for each array occupy one line of the list
and they are array name, number of rows, number
of columns. The entries on each line are separated
by commas.

 ArrayStatsFN

 Put ArrayStatsFN into slist

ArrayPutValue

C This puts the specified value into the named array
location designated by the row and column.

 ArrayPutValue(aname,row,col,value)

 ArrayPutValue(name,5,10,value)

ArrayValueFN

F This returns the value from the named array
location designated by the row and column.

 ArrayValueFN(aname,row,col)

 Put ArrayValueFN(name,row,col) into value

ArrayFill

C This fills the entire arrays with the specified value.

 ArrayFill(aname,value)

 ArrayFill(name,25)

ArrayFillRow

C This fills one row of the array with the specified
value.

 ArrayFillRow(aname,row,value)

 ArrayFillRow(name,10,25)

ArrayFillColumn

C This fills one column of the array with the
specified value.

 ArrayFillColumn(aname,col,value)

 ArrayFillColumn(name,10,25)

ArrayRowCountFN

F Returns the number of rows in the named array.

 ArrayRowCountFN(aname)

 Put ArrayRowCountFN(name) into num

ArrayColumnCountFN

F Returns the number of columns in the named
array.

 ArrayColumnCountFN(aname)

 Put ArrayColumnCountFN(name) into num

ArrayRowListFN

F Returns the specified row from the array as a list.

 ArrayRowListFN(aname,row)

 Put ArrayRowListFN(name,10) into list

ArrayColumnListFN

F Returns the specified column from the array as a
list.

 ArrayColumnListFN(aname,row)

 Put ArrayColumnListFN(name,10) into list

ArrayPutRow

C Puts the list into the specified row of the array.
The separator describes the separator used in the
list, whether a comma, tab etc.

 ArrayPutRow(aname,row,list,sep)

 ArrayPutRow(aname,25,list,comma)

ArrayPutColumn C Puts the list into the specified column of the

 array. The separator describes the separator used
in the list, whether a comma, tab etc.

 ArrayPutColumn(aname,col,list,sep)

 ArrayPutColumn(aname,25,list,comma)

ArrayWholeFN

F Returns the whole contents of the array as a list.
Each line in the list will contain the items from a
row separated by the specified separator.

 ArrayWholeFN(aname,sep)

 Put ArrayWholeFN(name,comma) into list

ArrayPutWhole

C This puts the contents of the list into the named
array. Each line in the list will contain the items
for a row separated by the specified separator.

 ArrayPutWhole(aname,list,sep)

 ArrayPutWhole(name,list,comma)

ArrayCopy

C Copies one array into a second array. The size of
the second array must be equal to or larger than
the first otherwise no operation will be performed.

 ArrayCopy(aname1,aname2)

 ArrayCopy(xmatrix,ymatrix)

9 Cards, Windows & Screens

Within both HyperNext Creator and the HyperNext scripting language cards are the
main organizational unit. Only one card may be visible at a time and each card can
hold many different types of control so allowing the user to interact with the
application. By changing the focus card different aspects of the stack/application can
be made accessible to users.

By treating cards as windows it can become easier to visualize the structure of an
application. Consider the creation of a simple neural network and how the user may
interact with it. Generally a neural network system has three main stages, data pre-
processing, training and querying. This can be easily implemented by a HyperNext
Creator project having three cards which are navigateable using push buttons. The
first card allows the user to drop in data, set up the number of data rows and then
pre-process it. The second card deals with training the neural network on the data
and typically would display a graph of training error over time. The third card uses
the trained neural network to accept further user data as a query and produce an
evaluation of it. In this example, three main functions equates with three cards. To
deploy the system in the field further cards would probably be added, such as a front
screen with information, a context help card and a preferences card.

Screen & ScreenShots

Name Type Description

ScreenWidthFN F Returns the width of the first screen.

 Put ScreenWidthFN into width

ScreenHeightFN F Returns the height of the first screen.

 Put ScreenHeightFN into height

SystemGetPixel C Places the appropriate red, green and blue
values of the pixel at the specified screen
coordinates.

 SystemGetPixel(x,y,r,g,b)

SystemMouseXFN F Returns the x coordinate of the mouse cursor
on the screen.

 Put SystemMouseXFN into mx

SystemMouseYFN F Returns the y coordinate of the mouse cursor
on the screen.

 Put SystemMouseYFN into my

SystemMouseDownFN F Returns 1 when the mouse is pressed and 0
otherwise.

 Put SystemMouseDownFN into mdown

SystemCommandLineFN F On the Windows platform this returns the
parameters passed to the program when it was
launched via the command line. On the
Macintosh platform it always returns 0.

 Put SystemCommandLineFN into cline

ScreenShotCanvas C Takes a screen shot of the whole screen and
places it in the specified canvas. When the
scale parameter is 0 then the image is placed in
the canvas unscaled and when 1 or nonzero is
scaled to fit the canvas.

 ScreenShotCanvas(cid,scale)

ScreenRectCanvas C Takes a screen shot of a rectangular area within
the screen and places it in the specified canvas.
When the scale parameter is 0 then the image
is placed in the canvas unscaled and when 1 or
nonzero is scaled to fit the canvas.

 ScreenRectCanvas(cid,scale,x,y,w,h)

ScreenShotImageBank C Takes a screen shot of the whole screen and
places it in the specified imagebank. When the
scale parameter is 0 then the image is placed in
the imagebank unscaled and when 1 or nonzero
is scaled to fit the imagebank.

 ScreenShotImageBank(ibnum,scale)

ScreenRectImageBank C Takes a screen shot of a rectangular area within
the screen and places it in the specified
imagebank. When the scale parameter is 0 then
the image is placed in the imagebank unscaled
and when 1 or nonzero is scaled to fit the
imagebank.

 ScreenRectImageBank(ibnum,scale,x,y,w,h)

Card Commands

The HyperNext language has a rich set of commands for moving between cards.

The first card in a stack is recognized as the Home card by HyperNext and it cannot
be deleted. Whenever a stack or built application starts up it will always load the
Home card first. It can though be forced into moving immediately to another card by
placing redirection code in the Home card start up handler.

Note
 When any Goto card command is executed, all other commands following it are
ignored.

 Global x,y
 Put 2 into x
 GotoCard 2
 @ this line and following are not executed
 Put 10 into y

Name Type Description

GotoHome

C Goes to the first card. In HyperNext the first card
called is always called Home and cannot be deleted.

GotoCard

C Goto the specified card, either a number or a name.

 Goto 14

 Goto finances

GotoThisCard

C Goes to the current card - it reloads the card and
executes its Open handler.

GotoPriorCard

C Goto the previous card. If some cards have been
deleted this command will search downwards until it
reaches an active card. Note that the Home card is
always active.

GotoNextCard

C Goes to the next highest and active card.

CardNextFN F Returns the number of the next card. If the current
card is the highest numbered card then 0 is
returned.

 Put CardNextFN into cnum

CardPriorFN F Returns the number of the previous card. If the
current card is card 1 then 0 is returned.

 Put CardPriorFN into cnum

DeleteCard

C Deletes the target card and if the specified
destination card is non zero then that card will be
loaded. If the target card is the current card and no
destination is given then the command will be
ignored

 DeleteCard 12,0 tries to delete card 12

 DeleteCard 12,5 tries to delete card 12 and
load 5

DeactivateCard

C Sets a card to inactive but does not delete it. This
makes the card inaccessible until reactivated.

 DeactivateCard 12

ActivateCard

C This activates the target card and if that card is non
zero it may be loaded.

 @ simply activate a card
 ActivateCard 12,0

 @ activate a card and go to it
 ActivateCard 12,12

TotalCardsFN

F Returns the total number of cards in the current
stack/application.

 Put TotalCardsFN into numcards

ActiveCardsFN

F Returns the number of active cards in the current
stack/application.

 Put ActiveCardsFN into cnum

CardExistsFN

F Returns true if the target card exists otherwise
returns false

 Put CardExistsFN(9) into res

CardActiveFN

F Returns true if the target card is active otherwise
returns false

 Put CardActiveFN(20) into x

CreateCardFN F Creates a new card from the target card. The new

 card is a duplicate of the target card, including
controls, their handlers/procedures, and values.

 Put CreateCardFN(2) into cardnum

 GotoCard cardnum

CardIDFN

F Returns the number of the current card.

 Put CardIDFN into field 1

CardNameFN

F Returns the name of the current card.

 Put CardNameFN into field 1

CardEnableColor

C This enables or disables the background colour of a
card.

 CardEnableColor cid,value

 where value is 0 or 1

CardSetColor

C This simply sets the background colour of the
specified card. If the card colour is already disabled
then the card will appear white.

 CardSetColor cid,red,green,blue

CardGetColor C Returns the background colour of the current card.

 CardGetColor red,green,blue

CardSetName C Sets the name and title of the specified card.

 CardSetName(cid,name)

CardSetWidth C Sets the width of the specified card.

 CardSetWidth(cid,number)

CardSetHeight C Sets the height of the specified card.

 CardSetHeight(cid,number)

CardSetLeft C Sets the left side of the specified card in pixels from
the left hand side of the screen.

 CardSetLeft(cid,number)

CardSetTop C Sets the top of the specified card in pixels from the
top of the screen.

 CardSetTop(cid,number)

CardSetCenter C Centers the specified card within the screen. If the
card number specified is not the current card then
the card will be centered when it is opened because
the command simply changes the x and y
coordinates of the card in order to center it. If the
card number passed is zero then the current card will
be centered.

 CardSetCenter(cnumber)

CardLoadImage C Loads the named local image file and attaches the
image to the card. The image can be left at its
normal size or scaled to fill the card using values of 0
or 1 respectively.

 CardLoadImage(cid,fname,scale)

 CardLoadImage(5,fname,1)

CardLoadImageAbs C Loads the named absolute image file and attaches
the image to the card. The image can be left at its
normal size or scaled to fill the card using values of 0
or 1 respectively.

 CardLoadImageAbs(cid,fname,scale)

 CardLoadImageAbs(5,fname,1)

CardLoadImageXP C Loads the named local cross-platform image file and
attaches the image to the card. The image can be
left at its normal size or scaled to fill the card using
values of 0 or 1 respectively.

 CardLoadImageXP(cid,fname,scale)

 CardLoadImageXP(5,fname,1)

CardLoadImageXPAbs C Loads the named absolute cross-platform image file
and attaches the image to the card. The image can
be left at its normal size or scaled to fill the card
using values of 0 or 1 respectively.

 CardLoadImageXPAbs(cid,fname,scale)

 CardLoadImageXPAbs(5,fname,1)

CardBankImage C Attaches a bank image to the specified card. This is
useful when many cards use the same image so
requiring just one copy of the image to be held in

memory. Furthermore, when the image bank is
changed then all cards using it will be automatically
updated.

 CardBankImage(cid,bankid)

 CardBankImage(12,2)

CardRemoveImage C Remove the image from the specified card. If the
image was attached to the card using a file then it
will be deleted from memory.

 CardRemoveImage(cid)

 CardRemoveImage(12)

CardLeftFN F Returns the distance of the specified card from the
lefthand side of the screen.

 Put CardLeftFN(cnum) into cleft

CardTopFN F Returns the distance of the specified card from the
top of the screen.

 Put CardTopFN(cnum) into ctop

CardWidthFN F Returns the width of the specified card.

 Put CardWidthFN(cnum) into cleft

CardHeightFN F Returns the height of the specified card.

 Put CardHeightFN(cnum) into cleft

10 Control Types

There are currently fourteen types of controls available in the HyperNext Language,
they are Button, Canvas, Field, Text, Movie, Check Box, Radio Button. Pop up Menu,
Slider, ScrollBar, Progress Bar, ListBox, Sprite Surface and Timer. All controls, except
Timer, can be visible to the user. Controls are created in using the
Creator/Developer by simply creating one in the Controls window and then by placing
them onto a Card after which their specific properties can be set. They can also be
created at runtime when a card is created or duplicated.

HyperNext distinguishes sharply between the actions and uses of controls. For
instance, buttons are used to initiate actions, canvases for displaying
graphics/pictures, fields for holding editable/scrolling text, texts for displaying text,
and movies for playing movies and sounds. Canvases though are highly flexible and
can be programmed to act like buttons and text fields etc.

Buttons

Buttons allow the user to interact with the program and each button has its own
handler. In addition to their size and placement, buttons have attributes for image,
sound and goto card, as well as natural attributes such as caption etc.

 A button can display an image which is often more interesting and effective than a
simple line of text on a grey background.

 Buttons can be set to play a predefined sound when pressed although any sounds
must already be defined in the Sound Library.

 Often a button is simply needed in order to navigate through the stack of cards and
so HyperNext buttons have a Goto property. If a button has its Goto property set
then this will override the attached user defined handler.

By default the action handler of a newly created button is empty but it is possible to
create complex programs within each handler, and to create many procedures within
each handler. To edit the action handler simply press the Script button in the
Properties window when the relevant button is highlighted.

Button properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the button.
Height The height of the button.
Text The text that a user will see at runtime.
Font The name of the font used to display the text.
Fontsize The size of the text.
Bold Sets the bold either on or off.
Italic Set the italic either on or off.
Underline Sets the underline either on or off.
Align Text alignment – left, center or right
Picture The picture that will be displayed instead of the text.

The image ratio check box determines how the image will be
displayed.

Sound The sound played when the button is pressed.
Goto The card to be loaded when the button is pressed.

This will override any code in the action handler.

Name Type Description

ButtonIDFN F When used within the action handler of a button

returns the numeric identity of that button.

 Put ButtonIDFN into bid

ButtonSetMode C Sets whether the button is enabled or not

 In the following the button identity is bid, and
value determines whether the button will be
enabled or disabled. The button is disabled when
value is zero and when non zero is enabled.

 ButtonSetMode bid,value

ButtonSetView C Sets whether the button will be visible or not

 In the following bid is the button identity, and
value determines whether the button will be in view
or will be hidden. When value is zero the button is
hidden and when non zero is shown.

 ButtonSetView bid,value

ButtonSetLeft C Sets the distance in pixels of the left side of the

button from the left side of the card.

 ButtonSetLeft bid,value

ButtonSetTop

C Sets the distance in pixels of the top of the button
from the card top.

 ButtonSetTop bid,value

ButtonSetWidth C Sets the width of the button in pixels.

 ButtonSetWidth bid,value

ButtonSetHeight C Sets the height of the button in pixels.

 ButtonSetHeight bid,value

ButtonSetFont C Sets the font name used to display the text or
caption within the button.

 ButtonSetFont bid,fname

ButtonSetSize

C Sets the size of the text or caption within the
button.

 ButtonSetSize bid,value

ButtonSetAlign

C Sets the alignment of the text or caption within the
button.

 ButtonSetAlign bid,value

Values can be

 1 - left

 2 - center

 3 - right

ButtonSetBold

C Sets the bold attribute of the text or caption within
the button to either on or off - 0 is off, 1 is on.

 ButtonSetBold bid,value

ButtonSetItalic

C Sets the italic attribute of the text or caption
within the button to either on or off - 0 is off, 1 is
on.

 ButtonSetItalic bid,value

ButtonSetUnderline

C Sets the underline attribute of the text or caption
within the button to either on or off - 0 is off, 1 is
on.

 ButtonSetUnderline bid,value

ButtonSetText

C Sets the text or caption within the button.

 ButtonSetText bid,value

ButtonModeFN

F The returned value indicates whether the specified
button is enabled or disabled.

 A return value of non zero indicates the button is
enabled otherwise it is disabled.

 Put ButtonModeFN(3) into bokay

ButtonViewFN

F The returned value indicates whether the specified
button is visible or hidden.

 A return value of non zero indicates the button is
visible otherwise it is hidden.

 Put ButtonViewFN(3) into bokay

ButtonLeftFN

F Returns the distance in pixels of the left side the
button from the left side of the card.

 Put ButtonLeftFN(1) into num

ButtonTopFN

F Returns the distance in pixels of the top of the
button from the top of the card.

 Put ButtonTopFN(1) into num

ButtonWidthFN

F Returns the width of the button.

 Put ButtonWidthFN(1) into num

ButtonHeightFN

F Returns the height of the button.

 Put ButtonHeightFN(1) into num

ButtonFontFN

F Returns the font name in which the button text is
displayed.

 Put ButtonFontFN(1) into fname

ButtonSizeFN

F Returns the size of the button text.

 Put ButtonSizeFN(1) into num

ButtonAlignFN

F Returns the alignment of the button text. Values
are:

 1 - left

 2 - center

 3 - right

 4 - default

 Put ButtonAlignFN(1) into num

ButtonBoldFN

F Returns 1 if the button text bold is on otherwise it
returns 0.

 Put ButtonBoldFN(1) into num

ButtonItalicFN

F Returns 1 if the button text italic is on otherwise it
returns 0.

 Put ButtonItalicFN(1) into num

ButtonUnderlineFN

F Returns 1 if the button text underline is on
otherwise it returns 0.

 Put ButtonUnderlineFN(1) into num

ButtonTextFN

F Returns the text or caption displayed in the button.

 Put ButtonTextFN(1) into txt

ButtonSetBevel C Sets the type of bevel for the button. The value is

in the range 0 to 7 as detailed below.

 ButtonSetBevel(bid,value)

 The values can be:
 0 - Small bevel
 1 - Normal bevel
 2 - Large bevel
 3 - Rounded bevel (OS X only)
 4 - No bevel (Windows only)
 5 - Round (OS X only)
 6 - Large round (OS X only)
 7 - Disclosure (OS X only)

 On other platforms the OS X only settings appear
as the small bevel style.

ButtonSetType C Sets the type of button and how it responds to
mouse presses.

 ButtonSetType(bid,value)

 The values can be:
 0 - Remains in the down position until the
mouse is released.
 1 - Toggles, remains in the down position until
clicked again.
 2 - Sticky, remains in the down position when
pressed.

ButtonSetValue C When set to 1 it makes the button appear pressed,
and when 0 normal.

 ButtonSetValue(bid,value)

ButtonBevelFN F Returns the current bevel setting for the specified
button.

 Put ButtonBevelFN(5) into bval

ButtonTypeFN F Returns the current type setting for the specified
button.

 Put ButtonTypeFN(5) into bval

ButtonValueFN F Returns the current value setting for the specified
button.

 Put ButtonValueFN(5) into bval

ButtonCallNumber C Calls the script in the button specified by the given
card and button numbers. If the card number is
zero then button is assumed to reside on the
present card.

 ButtonCallNumber(cardnumber,buttonnumber)

 @ Button 6 on present card
 ButtonCallNumber(0,6)

 @ Button 12 on card 8
 ButtonCallNumber(8,12)

ButtonCallName C Calls the script in the button specified by the given
card number and button name. If the card number
is zero then button is assumed to reside on the
present card.

 ButtonCallName(cardnumber,buttonname)

 ButtonCallName(5,’SoundBeep’)

Fields

A field control can both display text and receive text input via the keyboard or from
the program.

At design time a field control must be set to one of the six types below

 1 - single line.

 2 - single line with dark border.

 3 - multi line.

 4 - multi line with dark border.

 5 - multi line with vertical scroll bar.

 6 - multi line with dark border and vertical scroll bar

Text can be placed into field 1 using the following command

 Put x into Field 1

To access a field on an out of focus card use the field keywords FieldCardSet and
FieldCardFN to set the field value and fetch the value respectively.

Fields can also have a structure in a similar manner to an array. In HyperNext an array
is just a list of items separated by carriage returns(CRs). As lists are essential in most
programs HyperNext has a set of commands capable of handling them. The Put
command is the most versatile as shown

 Put x into line 10 of field 1

 Put x after line 10 of field 1

 Put x before line 10 of field 1

 Put x into word 10 of field 1

 Put x into char 10 of field 1

Each field can have its own set of handlers that are activated when the Mouse Up
event occurs within the field.

Name Type Description

FieldIDFN F When used within the action handler of a field

returns the numeric identity of that field.

 Put FieldIDFN into cid

FieldSetMode

C Sets whether the field is enabled or not

 In the following cid is the field control identity,
and value determines whether the field will be
enabled or disabled. When value is zero then the
field is disabled and when non zero it is enabled.

 FieldSetMode cid,value

FieldSetView

C Sets whether the field is visible or not

 In the following cid is the field control identity,
and value determines whether the field will be in
view or will be hidden. When value is zero then
the field is hidden and when non zero it is visible.

 FieldSetView cid,value

FieldSetLeft

C Sets the distance in pixels of the left side of the
field from the left side of the card.

 FieldSetLeft bid,value

FieldSetTop

C Sets the distance in pixels of the top of the field
from the card top.

 FieldSetTop bid,value

FieldSetWidth

C Sets the width of the field in pixels.

 FieldSetWidth bid,value

FieldSetHeight

C Sets the height of the field in pixels.

 FieldSetHeight bid,value

FieldModeFN

F The value returned indicates whether the
specified field is enabled or disabled.

 A return value of non zero indicates the field is
enabled otherwise it is disabled.

 Put FieldModeFN(3) into bokay

FieldViewFN

F The value returned indicates whether the
specified field is visible or hidden.

 A return value of non zero indicates the field is
visible otherwise it is hidden.

 Put FieldViewFN(3) into bokay

FieldLeftFN

F Returns the distance in pixels of the left side the
field from the left side of the card.

 Put FieldLeftFN(1) into num

FieldTopFN

F Returns the distance in pixels of the top of the
field from the top of the card.

 Put FieldTopFN(1) into num

FieldWidthFN

F Returns the width of the field control.

 Put FieldWidthFN(1) into num

FieldHeightFN

F Returns the height of the field control.

 Put FieldHeightFN(1) into num

FieldReadOnly

F Most fields are set to accept user input but their
read-only mode can be changed with this
command. When value is 0 the field will accept
text, and when non zero it becomes read-only.

 FieldReadOnly id,value

FieldLineFN

F When a field handler is activated this value will be
set before any code in the handler is run. It will
return the line number within the field where the
Mouse Up event occurred.

 Put FieldLineFN into fline
 Put line fline of field 1 into fdata

FieldPosFN F When a field handler is activated this value will be

 set before any code in the handler is run. It will
return the x position in pixels within the line
where the Mouse Up event occurred.

 Put FieldPosFN into xpos

FieldCardSet

F Sets the text of a field that resides on a card
currently out of focus. At the current time it
completely replaces the text already in the field.

 FieldCardSet cardid,fieldid,value

FieldCardFN

F Returns the text from a field residing on a card
currently out of focus. At the current time it can
only fetch all of the text.

 FieldCardFN(cardnum,field index)

 Put FieldCardFN(21,7) into x

FieldTabs

C This sets whether a field can receive tabs from
the keyboard or whether the tab will move the
focus to another control on the card.

 FieldTabs id,value

FieldPaperColor

C Sets the paper colour of field.

 FieldPaperColor id,r,g,b

FieldTextColor

C Sets the text colour of field.

 FieldTextColor id,r,g,b

FieldTextAlign

C This sets the alignment of text for the entire
field.

 0 - default

 1 - left

 2 - center

 3 - right

 FieldTextAlign id,value

FieldTextFont

C Sets the name of the font in which the text will
be displayed for the entire field.

 FieldTextFont id,value

FieldTextSize

C Sets the size of the text for the entire field.

 FieldTextSize id,value

FieldTextBold

C Sets whether the text is in bold or not for the
entire field.

 FieldTextBold id,value

FieldTextItalic

C Sets whether the text is in italic or not for the
entire field.

 FieldTextItalic id,value

FieldTextUnderline

C Sets whether the text is in underline or not for
the entire field.

 FieldTextUnderline id,value

FieldSelectAlign

C Sets the alignment for the selected text.

 FieldSelectAlign id,value

FieldSelectFont

C Sets the font name for the selected text.

 FieldSelectFont id,value

FieldSelectSize

C Sets the font size for the selected text.

 FieldSelectSize id,value

FieldSelectColor

C Sets the color for the selected text.

 FieldSelectColor id,r,g,b

FieldSelectBold

C Sets whether or not the selected text is in bold.

 FieldSelectBold id,value

FieldSelectItalic

C Sets whether or not the selected text is in italic.

 FieldSelectItalic id,value

FieldSelectUnderline

C Sets whether or not the selected text is in
underline.

 FieldSelectUnderline id,value

FieldSelTextFN

F Returns the text selected by the user double
clicking in the specified field. For example, below
specifies field 2.

 Put FieldSelTextFN(2) into txt

Field Events

In addition to the Mouse Down event a field can also receive several other events.
However, in order to make programming easier for beginners most of these other
events are disabled by default but can easily be enabled when a card (window) loads.

 The event which triggered the field’s handler can be found using the FieldEvent
function as shown in the example below and the event numbers are listed in the
following table:

Example

 Put FieldEventFN(1) into evnum

 If evnum=1 Then
 @ respond to Mouse Down
 EndIf

 If evnum=2 Then
 @ respond to Mouse Up
 EndIf

Event Description

1 - Mouse Down The mouse button was pressed within the field.

2 - Mouse Up The mouse button was released within the field.

3 - Mouse Drag The mouse was dragged within the field.

4 – Mouse Move The mouse moved within the field.

5 – Mouse Enter The mouse entered the field.

6 – Mouse Exit The mouse exited the field.

7 - Keydown A key was pressed while the field had the focus.

8 – Got focus The field received the focus.

9 – Lost focus The field lost the focus.

Name Type Description

FieldEventFN

F Returns an integer specifying the field event which
caused the field handler to be called.

 Put FieldEventFN into evnum

FieldSetMouseUp

C Disables or enables the field MouseUp event for the
specified field using the values 0 or 1 respectively.

 FieldSetMouseUp(fid,value)

FieldSetMouseMove

C Disables or enables the field MouseMove event for
the specified field using the values 0 or 1
respectively.

 FieldSetMouseMove(fid,value)

FieldSetMouseEnter

C Disables or enables the field MouseEnter event for
the specified field using the values 0 or 1
respectively.

 FieldSetMouseEnter(fid,value)

FieldSetMouseExit

C Disables or enables the field MouseExit event for the
specified field using the values 0 or 1 respectively.

 FieldSetMouseExit(fid,value)

FieldSetGotFocus

C Disables or enables the field Get Focus event for the
specified field using the values 0 or 1 respectively.

 FieldSetGotFocus (fid,value)

FieldSetLostFocus

C Disables or enables the field Lose Focus event for
the specified field using the values 0 or 1
respectively.

 FieldSetLostFocus (fid,value)

FieldGiveFocus

C Gives the focus to the specified field.

 FieldGetFocus(fid)

FieldRemoveFocus

C Removes the focus from the specified field.

 FieldRemoveFocus(fid)

FieldKeyDownFN

F Returns the character from the key press.

 Put FieldKeyDownFN into key

Canvases

Canvas are the most versatile control in HyperNext because they can display
graphics, images, receive mouse events, and also receive images through drag and
drop.

A canvas control has a graphics area that can be drawn into and assigned an image.
 As canvases can receive mouse down events they can be used to make custom
controls.

 At runtime a canvas can be assigned an image either by copying it from another
canvas or loading it from a file . Image manipulation can also be performed on a
canvas and the results saved to a file. All canvases and their associated images are
stored in 32 bit colour.

Colours have three components - red, green and blue.
 Their values range from 0 to 255.
 Black equals 0,0,0 and white equals 255,255,255

Name Type Description

CanvasIDFN F When used within the action handler of a canvas

returns the numeric identity of that canvas.

 Put CanvasIDFN into cid

CanvasSetMode

C Sets whether the canvas is enabled or not

 In the following bid is the canvas identity, and
value determines whether the canvas will be
enabled or disabled. When value is zero the
canvas is disabled and when non zero it is
enabled.

 CanvasSetMode bid,value

CanvasSetView

C Sets whether the canvas is visible or not

 In the following bid is the canvas identity, and
value determines whether the canvas will be in
view or will be hidden. When value is zero the
canvas is hidden and when non zero it is visible.

 CanvasSetView bid,value

CanvasModeFN

F The value returned indicates whether the
specified canvas is enabled or disabled.

 A return value of non zero indicates the canvas
is enabled otherwise it is disabled.

 Put CanvasModeFN(3) into bokay

CanvasViewFN

F The value returned indicates whether the
specified canvas is visible or hidden.

 A return value of non zero indicates the canvas
is visible otherwise it is hidden.

 Put CanvasViewFN(3) into bokay

CanvasDoFill

C Fills an area in the current colour starting at the
given point.

 CanvasDoFill id,x,y

CanvasDrawLine

C Draws a line between 2 points in the current
colour.

 CanvasDrawLine id,x1,y1,x2,y2

CanvasDrawOval

C Draws an empty oval in the current colour.

 CanvasDrawOval id,x,y,width,height

CanvasDrawRect

C Draws an empty rectangle in the current colour.

 CanvasDrawRect id,x,y,width,height

CanvasFillRect

C Draws a filled rectangle in the current colour.

 CanvasFillRect id,x,y,width,height

CanvasFillOval

C Draws a filled oval in the current color.

 CanvasFillOval canvas,x,y,width,height

@ The following example draws 1000 filled ovals
at random positions.

@ 1000 circles
Local n,x,y,xw,yh
Local red,green,blue
put CanvasWidthFN(1) into xw
put CanvasHeightFN(1) into yh
for n=1 to 1000
 put RndFN(0,255) into red

 put RndFN(0,255) into green
 put RndFN(0,255) into blue
 CanvasSetColor 1,red,green,blue
 put RndFN(1,xw) into x
 put RndFN(1,yh) into y
 FillOval 1,x,y,10,10
endfor

CanvasPlot

C Plots a point in the current color.

 CanvasPlot id,x,y

CanvasSetColor

C Set the pen to the given color.

 CanvasSetColor id,red,green,blue

CanvasGetColor

C Gets the current pen color.

 CanvasGetColor id,red,green,blue

CanvasGetPixelColor

C Gets the color of the pixel at the specified point.

 CanvasGetPixelColor id,x,y,red,green,blue

CanvasSetPenHeight

C Sets the height of the pen

 CanvasSetPenHeight id,value

CanvasSetPenWidth

C Sets the width of the pen

 CanvasSetPenWidth id,value

CanvasSetBold

C Sets the bold text style to on or off

 CanvasSetBold id,value

CanvasSetFont

C Sets the font such as “Courier”, “System” etc

 CanvasSetFont id,fontname

CanvasSetFontSize

C Sets the size for the current font.

 CanvasSetFontSize id,size

CanvasSetItalic

C Sets the italic text style to on or off

 CanvasSetItalic id,value

CanvasSetUnderline

C Sets the underline text style to on or off.

 CanvasSetUnderline id,value

CanvasDrawWrap

C Sets the wrap

 CanvasDrawWrap id,value,x,y,wrap

CanvasDrawText

C Draws text at the specified coordinates

 CanvasDrawText id,value,x,y

CanvasSetLeft

C Sets the distance in pixels of the left side of the
canvas from the left side of the card.

 CanvasSetLeft bid,value

CanvasSetTop

C Sets the distance in pixels of the top of the
canvas from the card top.

 CanvasSetTop bid,value

CanvasSetWidth

C Sets the width of the canvas in pixels.

 CanvasSetWidth (bid,value)

CanvasSetHeight

C Sets the height of the canvas in pixels.

 CanvasSetHeight (bid,value)

CanvasLeftFN

F Returns the distance in pixels of the left side the
canvas from the left side of the card.

 Put CanvasLeftFN(1) into num

CanvasTopFN

F Returns the distance in pixels of the top of the
canvas from the top of the card.

 Put CanvasTopFN(id) into num

CanvasWidthFN

F Returns the width of the specified canvas.

 Put CanvasWidthFN(id) into x

CanvasHeightFN

F Returns the height of the specified canvas.

 Put CanvasHeightFN(id) into x

CanvasTextWidthFN

F Returns the width in pixels of the given text.

 Put CanvasTextWidthFN(id,txt) into x

CanvasTextHeightFN

F Returns the height in pixels of the given text.

 Put CanvasTextHeightFN(id,txt) into x

CanvasMouseXFN

F Returns the x coordinate of where the mouse
down event took place.

 Put CanvasMouseXFN into x

CanvasMouseYFN

F Returns the y coordinate of where the mouse
down event took place.

 Put CanvasMouseYFN into y

CanvasScroll

C Scrolls an area of the specified canvas.

 CanvasScroll(cid,dx,dy,x,y,w,h)

 where
 cid - canvas identity
 dx - amount of x scroll (+vew or -ve).
 dy - amount of y scroll (+vew or -ve).
 x - x origin or scroll area.
 y - y origin of scroll area.
 w - width of area to be scrolled.
 h - height of area to be scrolled.

CanvasClear C Clears the canvas using the specified color.

 CanvasClear(cid,red,green,blue)

CanvasSetDrop C Disables or enables the specified canvas from
receiving a dropped image file.

 CanvasSetDrop(cid,value)

 @ disable for canvas 5
 CanvasSetDrop(5,0)

 @ enable for canvas 8
 CanvasSetDrop(8,1)

Canvas Events

In addition to the Mouse Down event a canvas can also receive several other events.
However, in order to make programming easier for beginners most of these other
events are disabled by default but can easily be enabled when a card (window) loads.

 The event which triggered the canvas’s handler can be found using the CanvasEvent
function as shown in the example below and the event numbers are listed in the
following table:

Example

 Put CanvasEventFN(1) into evnum

 If evnum=1 Then
 @ respond to Mouse Down
 EndIf

 If evnum=2 Then
 @ respond to Mouse Up
 EndIf

 Etc …….

Event Description

1 - Mouse Down The mouse button was pressed within the canvas.

2 - Mouse Up The mouse button was released within the canvas.

3 - Mouse Drag The mouse was dragged within the canvas.

4 – Mouse Move The mouse moved within the canvas.

5 – Mouse Enter The mouse entered the canvas.

6 – Mouse Exit The mouse exited the canvas.

7 - Keydown A key was pressed while the canvas had the focus.

8 – Got focus The canvas received the focus.

9 – Lost focus The canvas lost the focus.

Name Type Description

CanvasEventFN

F Returns an integer specifying the canvas event
which caused the canvas handler to be called.

 Put CanvasEventFN into evnum

CanvasSetMouseUp

C Disables or enables the canvas MouseUp event
for the specified canvas using the values 0 or 1
respectively.

 CanvasSetMouseUp cid,value

CanvasSetMouseDrag

C Disables or enables the canvas MouseDrag event
for the specified canvas using the values 0 or 1
respectively.

 CanvasSetMouseDrag cid,value

CanvasSetMouseMove

C Disables or enables the canvas MouseMove
event for the specified canvas using the values
0 or 1 respectively.

 CanvasSetMouseMove cid,value

CanvasSetMouseEnter

C Disables or enables the canvas MouseEnter
event for the specified canvas using the values
0 or 1 respectively.

 CanvasSetMouseEnter cid,value

CanvasSetMouseExit

C Disables or enables the canvas MouseExit event
for the specified canvas using the values 0 or 1
respectively.

 CanvasSetMouseExit cid,value

CanvasSetKeyDown

C Disables or enables the canvas
MouseSetKeyDown event for the specified
canvas using the values 0 or 1 respectively.

 CanvasSetKeyDown cid,value

CanvasSetGotFocus

C Disables or enables the canvas Get Focus event
for the specified canvas using the values 0 or 1
respectively.

 CanvasSetGotFocus cid,value

CanvasSetLostFocus

C Disables or enables the canvas Lose Focus
event for the specified canvas using the values
0 or 1 respectively.

 CanvasSetLostFocus cid,value

CanvasGetFocus

C Gives the focus to the specified canvas.

 CanvasGetFocus cid

CanvasRemoveFocus

C Removes the focus from the specified canvas.

 CanvasRemoveFocus cid

CanvasKeyDownFN

F Returns the character from the key press.

 Put CanvasKeyDownFN into key

Texts

A text control is simply a static text that is placed onto a card at design time.
However, during runtime its value and other attributes can be changed.

Typical uses might be as a heading, a counter or some other indicator.

Although text control is usually used to display a static text such as a header or
other information it can though be used dynamically, for instance to indicate a time
or a counter. If you need a dynamic text then it is usually better to use a Text
control rather than a Field control because Texts operate much more quickly and
with less visible flashing.

The properties of a text can be set both from within the Creator/Developer or at
runtime, properties such as font, font size, bold, italic, underline, and text colour.

Text properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the text.
Height The height of the text.
Text The text that a user will see at runtime.
Font The name of the font used to display the text.
Fontsize The size of the text.
Bold Sets the bold either on or off.
Italic Set the italic either on or off.
Underline Sets the underline either on or off.
Align Text alignment – left, center or right

Name Type Description

TextSetValue

C This set the current text value where tid is the
text identifier and value is the new text value.

 TextSetValue tid,value

TextSetMode C Sets whether the text control is enabled or not

 In the following tid is the text control identity,
and value determines whether the text will be
enabled or disabled. When value is zero the
text is disabled and when non zero it is enabled.

 TextSetMode tid,value

TextSetView

C Sets whether the text control is visible or not

 In the following bid is the text control identity,
and value determines whether the text will be in
view or will be hidden. When value is zero the
text is hidden and when non zero it is visible.

 TextSetView tid,value

TextSetLeft

C Sets the distance in pixels of the left side of the
text control from the left side of the card.

 TextSetLeft tid,value

TextSetTop

C Sets the distance in pixels of the top of the text
control from the card top.

 TextSetTop tid,value

TextSetWidth

C Sets the width of the text control in pixels.

 TextSetWidth tid,value

TextSetHeight

C Sets the height of the text control in pixels.

 TextSetHeight tid,value

TextSetFont

C Sets the fontname used to display the text
within the text control.

 TextSetFont tid,fname

TextSetSize

C Sets the size of the text within the text control.

 TextSetSize tid,value

TextSetAlign

C Sets the alignment of the text within the text
control.

 TextSetAlign tid,value

Values can be

 1 - left

 2 - center

 3 – right

TextSetBold

C Sets the bold attribute of the text control to
either on or off - 0 is off, 1 is on.

 TextSetBold tid,value

TextSetItalic

C Sets the italic attribute of the text control to
either on or off - 0 is off, 1 is on.

 TextSetItalic tid,value

TextSetUnderline

C Sets the underline attribute of the text control
to either on or off - 0 is off, 1 is on.

 TextSetUnderline tid,value

TextSetColor

C Sets the colour of the specified text.

 TextSetColor tid,r,g,b

TextModeFN

F The value returned indicates whether the
specified text control is enabled or disabled.

 A return value of non zero indicates the text is
enabled otherwise it is disabled.

 Put TextModeFN(3) into bokay

TextViewFN

F The value returned indicates whether the
specified text control is visible or hidden.

 A return value of non zero indicates the text is
visible otherwise it is hidden.

 Put TextViewFN(3) into bokay

TextLeftFN

F Returns the distance in pixels of the left side the
text control from the left side of the card.

 Put TextLeftFN(1) into num

TextTopFN

F Returns the distance in pixels of the top of the
text control from the top of the card.

 Put TextTopFN(1) into num

TextWidthFN

F Returns the width of the text control.

 Put TextWidthFN(1) into num

TextHeightFN

F Returns the height of the text control.

 Put TextHeightFN(1) into num

TextFontFN

F Returns the font name in which the text is
displayed.

 Put TextFontFN(1) into fname

TextSizeFN

F Returns the size of the text.

 Put TextSizeFN(1) into num

TextAlignFN

F Returns the alignment of the text. Values are:

 1 - left

 2 - center

 3 - right

 4 - default

 Put TextAlignFN(1) into num

TextBoldFN

F Returns 1 if the text bold is on otherwise it
returns 0.

 Put TextBoldFN(1) into num

TextItalicFN

F Returns 1 if the text italic is on otherwise it
returns 0.

 Put TextItalicFN(1) into num

TextUnderlineFN

F Returns 1 if the text underline is on otherwise it
returns 0.

 Put TextUnderlineFN(1) into num

TextValueFN

F Returns the text displayed in the text control.

 Put TextValueFN(1) into txt

Check Boxes

A check box has two states and allows the user to initiate an action or set a state by
merely clicking the check box.

Check boxes each have their own handler and their attributes can be changed during
runtime.

Check Box properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the check box.
Height The height of the check box.
Text The text that a user will see at runtime.
Font The name of the font used to display the text.
Fontsize The size of the text.
Bold Sets the bold either on or off.
Italic Set the italic either on or off.
Underline Sets the underline either on or off.
State Whether the box is checked or not,

1 - checked, 0 = unchecked.

Name Type Description

CheckBoxSetMode

C Sets whether the check box is enabled or not

 In the following bid is the checkbooks identity,
and value determines whether the check box will
be enabled or disabled. When value is zero the
check box is disabled and when non zero it is
enabled.

 CheckBoxSetMode bid,value

CheckBoxSetView

C Sets whether the check Box is visible or not

 In the following bid is the check box identity,
and value determines whether the check box will
be in view or will be hidden. When value is zero

the check box is hidden and when non zero it is
visible.

 CheckBoxSetView bid,value

CheckBoxSetState

C Sets whether the check Box is checked or not

 In the following bid is the check box identity,
and value determines whether the check box will
be checked or unchecked. When value is zero
the check box is unchecked and when non zero
it is checked.

 CheckBoxSetState bid,value

CheckBoxSetLeft

C Sets the distance in pixels of the left side of the
check box from the left side of the card.

 CheckBoxSetLeft bid,value

CheckBoxSetTop

C Sets the distance in pixels of the top of the
check box from the card top.

 CheckBoxSetTop bid,value

CheckBoxSetWidth

C Sets the width of the check box in pixels.

 CheckBoxSetWidth bid,value

CheckBoxSetHeight

C Sets the height of the check box in pixels.

 CheckBoxSetHeight bid,value

CheckBoxSetFont

C Sets the font name used to display the text or
caption within the check box.

 CheckBoxSetFont bid,fname

CheckBoxSetSize

C Sets the size of the text or caption within the
check box.

 CheckBoxSetSize bid,value

CheckBoxSetBold

C Sets the bold attribute of the text or caption
within the check box to either on or off - 0 is
off, 1 is on.

 CheckBoxSetBold bid,value

CheckBoxSetItalic

C Sets the italic attribute of the text or caption
within the check box to either on or off - 0 is

off, 1 is on.

 CheckBoxSetItalic bid,value

CheckBoxSetUnderline

C Sets the underline attribute of the text or
caption within the check box to either on or off
- 0 is off, 1 is on.

 CheckBoxSetUnderline bid,value

CheckBoxSetText

C Sets the text or caption within the check box.

 CheckBoxSetText bid,value

CheckBoxModeFN

F The value returned indicates whether the
specified check box is enabled or disabled.

 A return value of non zero indicates the check
box is enabled otherwise it is disabled.

 Put CheckBoxModeFN(3) into bokay

CheckBoxViewFN

F The value returned indicates whether the
specified check box is visible or hidden.

 A return value of non zero indicates the check
box is visible otherwise it is hidden.

 Put CheckBoxViewFN(3) into bokay

CheckBoxStateFN

F The value returned indicates whether the
specified check box is checked or unchecked.

 A return value of non zero indicates the check
box is checked otherwise it is checked.

 Put CheckBoxStateFN(3) into bokay

CheckBoxLeftFN

F Returns the distance in pixels of the left side of
the check box from the left side of the card.

 Put CheckBoxLeftFN(1) into num

CheckBoxTopFN

F Returns the distance in pixels of the top of the
check box from the top of the card.

 Put CheckBoxTopFN(1) into num

CheckBoxWidthFN

F Returns the width of the check box.

 Put CheckBoxWidthFN(1) into num

CheckBoxHeightFN

F Returns the height of the check box.

 Put CheckBoxHeightFN(1) into num

CheckBoxFontFN

F Returns the font name in which the check box
text is displayed.

 Put CheckBoxFontFN(1) into fname

CheckBoxSizeFN

F Returns the size of the check box text.

 Put CheckBoxSizeFN(1) into num

CheckBoxBoldFN

F Returns 1 if the check box text bold is on
otherwise it returns 0.

 Put CheckBoxBoldFN(1) into num

CheckBoxItalicFN

F Returns 1 if the check box text italic is on
otherwise it returns 0.

 Put CheckBoxItalicFN(1) into num

CheckBoxUnderlineFN

F Returns 1 if the check box text underline is on
otherwise it returns 0.

 Put CheckBoxUnderlineFN(1) into num

CheckBoxTextFN

F Returns the text or caption displayed in the
check box.

 Put CheckBoxTextFN(1) into txt

Radio Buttons

Sometimes referred to as option buttons, radio buttons allow the user to select one
item in a group and when an item is selected the other group items are
automatically deselected.
Radio buttons each have their own handler and their attributes can be changed
during runtime.

Note,
Radio buttons are assigned their group number at design time and currently this
cannot be changed at runtime.

Radio Button properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the radio button.
Height The height of the radio button.
Text The text that a user will see at runtime.
Font The name of the font used to display the text.
Fontsize The size of the text.
Bold Sets the bold either on or off.
Italic Set the italic either on or off.
Underline Sets the underline either on or off.
State Whether the radio button is selected or not,

 1 - selected, 0 = deselected.

Name Type Description

RadioSetMode

C Sets whether the radio button is enabled or
not.

 In the following example, bid holds the radio
button identity, and value determines whether
the radio button will be enabled or disabled.
When value is zero the radio button is disabled
and when non zero it is enabled.

 RadioSetMode bid,value

RadioSetView

C Sets whether the radio button will be visible or
not.

When value is zero the radio button is hidden
and when non zero it is visible.

 RadioSetView bid,value

RadioSetState

C Sets whether the radio button is selected or
deselected.

When value is zero the radio button is
deselected and when non zero it is selected.

 RadioSetState bid,value

RadioSetLeft

C Sets the distance in pixels of the left side of
the radio button from the left side of the card.

 RadioSetLeft bid,value

RadioSetTop

C Sets the distance in pixels of the top of the
radio button from the card top.

 RadioSetTop bid,value

RadioSetWidth

C Sets the width of the radio button in pixels.

 RadioSetWidth bid,value

RadioSetHeight

C Sets the height of the radio button in pixels.

 RadioSetHeight bid,value

RadioSetFont

C Sets the name of the font used to display the
text or caption within the radio button.

 RadioSetFont bid,fname

RadioSetSize

C Sets the font size of the text within the radio
button.

 RadioSetSize bid,value

RadioSetBold

C Sets the bold attribute of the text within the
radio button to either on or off - 0 is off, 1 is
on.

 RadioSetBold bid,value

RadioSetItalic

C Sets the italic attribute of the text within the
radio button to either on or off - 0 is off, 1 is
on.

 RadioSetItalic bid,value

RadioSetUnderline

C Sets the underline attribute of the text within
the radio button to either on or off - 0 is off, 1
is on.

 RadioSetUnderline bid,value

RadioSetText

C Sets the text or caption within the radio
button.

 RadioSetText bid,value

RadioStateFN

F The returned value indicates whether the
specified radio button is selected or
deselected.

 A return value of 1 indicates the radio button
is selected and 0 that it is deselected.

 Put RadioModeFN(3) into bstate

RadioViewFN

F The returned value indicates whether the
specified radio button is visible or hidden.

 A return value of 1 indicates the radio button
is visible and 0 that it is hidden.

 Put RadioViewFN(3) into bview

RadioStateFN

F The returned value indicates whether the
specified radio button is selected or
deselected.

 A return value of 1 indicates the radio button
is selected and 0 that it is deselected.

 Put RadioStateFN(3) into bokay

RadioLeftFN

F Returns the distance in pixels of the left side of
the specified radio button from the left side of
the card.

 Put RadioLeftFN(1) into xnum

RadioTopFN F Returns the distance in pixels of the top of the

 specified radio button from the top of the
card.

 Put RadioTopFN(1) into ynum

RadioWidthFN

F Returns the width of the specified radio
button.

 Put RadioWidthFN(1) into wnum

RadioHeightFN

F Returns the height of the specified radio
button.

 Put RadioHeightFN(1) into hnum

RadioFontFN

F Returns the font name in which the specified
radio button text is displayed.

 Put RadioFontFN(1) into fname

RadioSizeFN

F Returns the size of the text in the specified
radio button.

 Put RadioSizeFN(1) into tsize

RadioBoldFN

F Returns 1 if the radio button text is bold and 0
if not.

 Put RadioBoldFN(1) into num

RadioItalicFN

F Returns 1 if the radio button text is italic and 0
if not.

 Put RadioItalicFN(1) into num

RadioUnderlineFN

F Returns 1 if the radio button text is underline
and 0 if not.

 Put RadioUnderlineFN(1) into num

RadioTextFN

F Returns the text displayed in the radio button.

 Put RadioTextFN(1) into txt

RadioPressedFN

F Returns the numeric identity of the radio
button last pressed.

 Put RadioPressedFN into whichbutton

RadioFindGroupFN

F Returns the numeric identity of the group
containing the specified radio button.

 Put RadioFindGroupFN(1) into groupnum

RadioListGroupFN

F Returns a list of radio buttons contained within
the specified group.

 Put RadioListGroupFN(1) into grouplist

Popup Menus

Pop up menus allow the user to select one item from many and are especially useful
when a list of items is large as for instance when selecting a font name.

Pop up menus each have their own handler and their attributes can be changed
during runtime.

Popup Menu properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the popup menu.
Height The height of the popup menu.
Text The text that a user will see at runtime.
Font The name of the font used to display the text.
Fontsize The size of the text.
Bold Sets the bold either on or off.
Italic Set the italic either on or off.
Underline Sets the underline either on or off.
Value The rows of text making up the pop up menu.

Name Type Description

PopupSetMode

C Sets whether the pop up menu is enabled or not

When value is 1 then the pop up menu is disabled
and when 1 it is enabled.

 PopupSetMode bid,value

PopupSetView

C Sets whether the pop up menu is visible or not.

When value is 0 then the pop up menu is hidden and
when 1 it is visible.

 PopupSetView bid,value

PopupSetIndex

C Sets which pop up menu item is displayed where the
value 1 is the first item in the list.

 PopupSetIndex bid,value

PopupsetItem C Sets the row containing the specified text value.

 PopupSetItem bid,value

PopupSetLeft

C Sets the distance in pixels of the left side of the pop
up menu from the left side of the card.

 PopupSetLeft bid,value

PopupSetTop

C Sets the distance in pixels of the top of the pop up
menu from the card top.

 PopupSetTop bid,value

PopupSetWidth

C Sets the width of the pop up menu in pixels.

 PopupSetWidth bid,value

PopupSetHeight

C Sets the height of the pop up menu in pixels.

 PopupSetHeight bid,value

PopupSetFont

C Sets the font used to display the text within the pop
up menu.

 PopupSetFont bid,fname

PopupSetSize

C Sets the size of the text within the pop up menu.

 PopupSetSize bid,value

PopupSetBold

C Sets the bold attribute of the pop up menu text to
either on or off - 0 is off, 1 is on.

 PopupSetBold bid,value

PopupSetItalic

C Sets the italic attribute of the pop up menu text to
either on or off - 0 is off, 1 is on.

 PopupSetItalic bid,value

PopupSetUnderline

C Sets the underline attribute of the pop up menu
text either on or off - 0 is off, 1 is on.

 PopupSetUnderline bid,value

PopupSetText

C Sets the whole text of the pop up menu. The text
should be in list form with each line representing one

item in the pop up menu.

 PopupSetText bid,value

PopupModeFN

F The returned value indicates whether the specified
pop up menu is enabled or disabled.

A return value of 1 indicates the pop up menu is
enabled and 0 that it is disabled.

 Put PopupModeFN(3) into bokay

PopupViewFN

F The returned value indicates whether the specified
pop up menu is visible or hidden.

 A return value of 1 indicates the pop up menu is
visible and 0 that it is hidden.

 Put PopupViewFN(3) into bokay

PopupIndexFN

F The returned value indicates which pop up menu
item is currently displayed.

 Put PopupIndexFN(3) into bokay

PopupLeftFN

F Returns the distance in pixels of the left side of the
pop up menu from the left side of the card.

 Put PopupLeftFN(1) into num

PopupTopFN

F Returns the distance in pixels of the top of the pop
up menu from the top of the card.

 Put PopupTopFN(1) into num

PopupWidthFN

F Returns the width of the pop up menu.

 Put PopupWidthFN(1) into num

PopupHeightFN

F Returns the height of the pop up menu.

 Put PopupHeightFN(1) into num

PopupFontFN

F Returns the name of the font in which the pop up
menu text is displayed.

 Put PopupFontFN(1) into fname

PopupSizeFN

F Returns the size of the pop up menu text.

 Put PopupSizeFN(1) into num

PopupBoldFN

F Returns 1 if the pop up menu text bold is on
otherwise it returns 0.

 Put PopupBoldFN(1) into num

PopupItalicFN

F Returns 1 if the pop up menu text is italicized
otherwise it returns 0.

 Put PopupItalicFN(1) into num

PopupUnderlineFN

F Returns 1 if the pop up menu text is underlined
otherwise it returns 0.

 Put PopupUnderlineFN(1) into num

PopupTextFN

F Returns as a list the complete text displayed in the
pop up menu.

 Put PopupTextFN(1) into txt

PopupItemFN

F Returns the item currently selected for the specified
pop up menu.

 Put PopupItemFN(1) into txt

Scroll Bars

A text control is simply a static text that is placed onto a card at design time.
However, during runtime its value and other attributes can be changed.

Typical uses might be as a heading, a counter or some other indicator.

Although text control is usually used to display a static text such as a header or
other information it can though be used dynamically, for instance to indicate a time
or a counter. If you need a dynamic text then it is usually better to use a Text
control rather than a Field control because Texts operate much more quickly and
with less visible flashing.

The properties of a text can be set both from within the Creator/Developer or at
runtime, properties such as font, font size, bold, italic, underline, and text colour.

Scroll Bar properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the text.
Height The height of the text.

Name Type Description

ScrollbarSetValue

C This set the current text value where tid is the
text identifier and value is the new text value.

 ScrollbarSetValue tid,value

ScrollbarSetMode

C Sets whether the text control is enabled or not

 In the following tid is the text control identity,
and value determines whether the text will be
enabled or disabled. When value is zero the
text is disabled and when non zero it is enabled.

 ScrollbarSetMode tid,value

ScrollbarSetView

C Sets whether the text control is visible or not

 In the following bid is the text control identity,
and value determines whether the text will be in
view or will be hidden. When value is zero the
text is hidden and when non zero it is visible.

 ScrollbarSetView tid,value

ScrollbarSetLeft

C Sets the distance in pixels of the left side of the
text control from the left side of the card.

 ScrollbarSetLeft tid,value

ScrollbarSetTop

C Sets the distance in pixels of the top of the text
control from the card top.

 ScrollbarSetTop tid,value

ScrollbarSetWidth

C Sets the width of the text control in pixels.

 ScrollbarSetWidth tid,value

ScrollbarSetHeight

C Sets the height of the text control in pixels.

 ScrollbarSetHeight tid,value

TextSetFont

C Sets the fontname used to display the text
within the text control.

 TextSetFont tid,fname

TextSetSize

C Sets the size of the text within the text control.

 TextSetSize tid,value

TextSetAlign

C Sets the alignment of the text within the text
control.

 TextSetAlign tid,value

Values can be

 1 - left

 2 - center

 3 – right

TextSetBold C Sets the bold attribute of the text control to

 either on or off - 0 is off, 1 is on.

 TextSetBold tid,value

TextSetItalic

C Sets the italic attribute of the text control to
either on or off - 0 is off, 1 is on.

 TextSetItalic tid,value

TextSetUnderline

C Sets the underline attribute of the text control
to either on or off - 0 is off, 1 is on.

 TextSetUnderline tid,value

TextSetColor

C Sets the colour of the specified text.

 TextSetColor tid,r,g,b

TextModeFN

F The value returned indicates whether the
specified text control is enabled or disabled.

 A return value of non zero indicates the text is
enabled otherwise it is disabled.

 Put TextModeFN(3) into bokay

TextViewFN

F The value returned indicates whether the
specified text control is visible or hidden.

 A return value of non zero indicates the text is
visible otherwise it is hidden.

 Put TextViewFN(3) into bokay

TextLeftFN

F Returns the distance in pixels of the left side the
text control from the left side of the card.

 Put TextLeftFN(1) into num

TextTopFN

F Returns the distance in pixels of the top of the
text control from the top of the card.

 Put TextTopFN(1) into num

TextWidthFN

F Returns the width of the text control.

 Put TextWidthFN(1) into num

TextHeightFN

F Returns the height of the text control.

 Put TextHeightFN(1) into num

TextFontFN

F Returns the font name in which the text is
displayed.

 Put TextFontFN(1) into fname

TextSizeFN

F Returns the size of the text.

 Put TextSizeFN(1) into num

TextAlignFN

F Returns the alignment of the text. Values are:

 1 - left

 2 - center

 3 - right

 4 - default

 Put TextAlignFN(1) into num

TextBoldFN

F Returns 1 if the text bold is on otherwise it
returns 0.

 Put TextBoldFN(1) into num

TextItalicFN

F Returns 1 if the text italic is on otherwise it
returns 0.

 Put TextItalicFN(1) into num

TextUnderlineFN

F Returns 1 if the text underline is on otherwise it
returns 0.

 Put TextUnderlineFN(1) into num

TextValueFN

F Returns the text displayed in the text control.

 Put TextValueFN(1) into txt

Movies

A movie control can be placed onto a card and at design time assigned a movie from
the library. Alternatively at runtime your users can simply drag and drop a movie
onto the movie control or assign one from a file. Movie controls can play movies.
MP3s and other sounds.

Currently only two movie controls can be assigned to each card.
One movie can be visible to users and can be used to play the movie, MP3 or other
media. The second movie is often hidden and used to open media files and find their
properties before passing on the media file to the visible movie control.

Movie properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the movie.
Height The height of the movie.

Name Type Description

MovieSetMode

C Sets whether the movie is enabled or not

 In the following bid is the movie control identity,
and value determines whether the movie will be
enabled or disabled. When value is zero the movie
is disabled and when non zero it is enabled.

 MovieSetMode(bid,value)

MovieSetView

C Sets whether the movie is visible or not

 In the following bid is the movie control identity,
and value determines whether the movie will be in
view or will be hidden. When value is zero the
movie is hidden and when non zero it is visible.

 MovieSetView(bid,value)

MovieSetLeft

C Sets the distance in pixels of the left side of the
movie from the left side of the card.

 MovieSetLeft(bid,value)

MovieSetTop

C Sets the distance in pixels of the top of the movie
from the card top.

 MovieSetTop(bid,value)

MovieSetWidth

C Sets the width of the movie in pixels.

 MovieSetWidth(bid,value)

MovieSetHeight

C Sets the height of the movie in pixels.

 MovieSetHeight(bid,value)

MovieModeFN

F The value returned indicates whether the specified
movie is enabled or disabled.

 A return value of non zero indicates the movie is
enabled otherwise it is disabled.

 Put MovieModeFN(3) into bokay

MovieViewFN

F The value returned indicates whether the specified
movie is visible or hidden.

 A return value of non zero indicates the movie is
visible otherwise it is hidden.

 Put MovieViewFN(3) into bokay

MovieLeftFN

F Returns the distance in pixels of the left side the
movie from the left side of the card.

 Put MovieLeftFN(1) into num

MovieTopFN

F Returns the distance in pixels of the top of the
movie from the top of the card.

 Put MovieTopBFN(1) into num

MovieWidthFN

F Returns the width of the movie control.

 Put MovieWidthFN(1) into num

MovieHeightFN

F Returns the height of the movie control.

 Put MovieHeightFN(1) into num

MovieSetControls C Sets the type of controls shown on the movie

controller.

 MovieSetControls(bid,value)

 Where value =
 0 - no controls
 1 - badge
 2 - full controller

MovieSetSpeaker C Sets whether the movie volume control is visible or
not. It takes effect the next time the movie
control is assigned a movie or sound.

 MovieSetSpeaker(bid,value)

MovieSetFile C Tries to open a movie or sound file and attach it to
the movie control. The function MovieOkayFN can
be used to se if the command was successful or
not. The filename refers to a local file or specifies
the path to a local file.

 MovieSetFile(bid,fname)

MovieSetFileAbs C Tries to open a movie or sound file and attach it to
the movie control. The function MovieOkayFN can
be used to se if the command was successful or
not. The filename specifies the absolute path to
the file.

 MovieSetFileAbs(bid,fname)

MovieSetLooping C Sets whether the movie will loop or not.

 MovieSetLooping(bid,value)

MovieSetStep C Sets whether or not the movie has
forward/reverse arrows. It takes effect the next
time the movie control is assigned a movie or
sound.

 MovieSetStep(bid,value)

MovieSetVolume C Sets the volume of the movie in the range 0 to
255.

 MovieSetVolume(bid,value)

MoviePlayReverse C Plays the movie in reverse.

 MoviePlayReverse(bid)

MoviePlayHalfSpeed C Plays the movie at half normal speed.

 MoviePlayHalfSpeed(bid)

MoviePlayNormalSpeed C Plays the movie at normal speed.

 MoviePlayNormalSpeed(bid)

MoviePlayDoubleSpeed C Plays the movie at twice normal speed.

 MoviePlayDoubleSpeed(bid)

MoviePause C Pauses(stops) the movie.

 MoviePause(bid)

MoviePoll C This polls the movie and is often needed on the
Windows platform to ensure smooth playback.

 MoviePoll(bid)

MovieVolumeFN F Returns the volume of the movie. The volume
ranges from 0 to 255.

 Put MovieVolumeFN(1) into num

MoviePositionFN F Returns the current position in seconds of the
movie or sound.

 Put MoviePositionFN(1) into num

MovieLengthFN F Returns the length of the movie or sound in
seconds.

 Put MovieLengthFN(1) into num

MovieIsPlayingFN F Returns whether the movie or sound is playing or
has stopped (paused).
Returns 1 when playing and 0 when stopped.

 Put MovieIsPlayingFN(1) into okay

MovieBaseWidthFN F Returns the actual width of the movie in pixels.

 Put MovieBaseWidthFN(1) into num

MovieBaseHeightFN F Returns the actual height of the movie in pixels.

 Put MovieBaseHeightFN(1) into num

MovieOkayFN F Returns whether the selected movie is a valid

movie or media file.

 Put MovieOkayFN(1) into okay

Listboxes

Listboxes are used to display one or more columns of information. Their contents can
be sorted and items can have checkboxes. Rows and cells are numbered from 1
upwards and not from 0 as in many other programming languages. Note, the
maximum number of columns visible is 64.

Listboxes each have their own action handler and can respond to many events. See
the function ListboxEventFN for more details.

Name Type Description

CanvasIDFN F When used within the action handler of a canvas

returns the numeric identity of that canvas.

 Put CanvasIDFN into cid

ListboxSetMode

C Sets whether the canvas is enabled or not

 In the following bid is the canvas identity, and
value determines whether the canvas will be
enabled or disabled. When value is zero the
canvas is disabled and when non zero it is
enabled.

 ListboxSetMode bid,value

ListboxSetView

C Sets whether the canvas is visible or not

 In the following bid is the canvas identity, and
value determines whether the canvas will be in
view or will be hidden. When value is zero the
canvas is hidden and when non zero it is visible.

 ListboxSetView bid,value

ListboxModeFN

F The value returned indicates whether the
specified canvas is enabled or disabled.

 A return value of non zero indicates the canvas
is enabled otherwise it is disabled.

 Put ListboxModeFN(3) into bokay

ListboxViewFN F The value returned indicates whether the

 specified canvas is visible or hidden.

 A return value of non zero indicates the canvas
is visible otherwise it is hidden.

 Put ListboxViewFN(3) into bokay

ListboxSetLeft

C Sets the distance in pixels of the left side of the
canvas from the left side of the card.

 ListboxSetLeft bid,value

ListboxSetTop

C Sets the distance in pixels of the top of the
canvas from the card top.

 ListboxSetTop bid,value

ListboxSetWidth

C Sets the width of the canvas in pixels.

 ListboxSetWidth bid,value

ListboxSetHeight

C Sets the height of the canvas in pixels.

 ListboxSetHeight bid,value

ListboxLeftFN

F Returns the distance in pixels of the left side the
canvas from the left side of the card.

 Put ListboxLeftFN(1) into num

ListboxTopFN

F Returns the distance in pixels of the top of the
canvas from the top of the card.

 Put ListboxTopFN(id) into num

ListboxWidthFN

F Returns the width of the specified canvas.

 Put ListboxWidthFN(id) into x

ListboxHeightFN

F Returns the height of the specified canvas.

 Put ListboxHeightFN(id) into x

ListboxSetTextFont C Sets the text font for the specified listbox.

 ListboxSetTextFont(lbox,fontname)

ListboxTextFontFN F Returns the text font name for the specified
listbox.

 ListboxTextFontFN(lbox)

 Put ListboxTextFontFN(5) into fontname

ListboxSetTextSize C Sets the text size for the specified listbox.

 ListboxSetTextSize(lbox,textsize)

ListboxTextSizeFN F Returns the text size for the specified listbox.

 ListboxTextSizeFN(lbox)

 Put ListboxTextSizeFN(5) into tsize

Listbox Events

In addition to the Mouse Down event a canvas can also receive several other events.
However, in order to make programming easier for beginners most of these other
events are disabled by default but can easily be enabled when a card (window) loads.

 The event which triggered the canvas’s handler can be found using the CanvasEvent
function as shown in the example below and the event numbers are listed in the
following table:

Example

 Put ListboxEventFN(1) into evnum

 If evnum=6 Then
 @ respond to file drop
 EndIf

 If evnum=7 Then
 @ respond to double click
 EndIf

 Etc …….

Event Description

1 – Cell action A cell was edited or a cell checkbox was clicked

2 – Cell clicked A cell received a mouse click.

3 – DragReorder
rows

A row was dragged into another position.

4 – Drag row A row was dragged out of the listbox.

5 – Drop drag A text was dragged and dropped onto the listbox.

6 – Drop file A file/folder or files were dropped onto the listbox.

7 – Double click A mouse double click occured.

8 – Header Pressed A column within the header was pressed.

9 – Cell keydown A cell received a key down.

10 – Cell got focus A cell received the focus.
11 – Cell text change The text changed within a cell.
12 – Cell lost focus A cell lost the focus.
13 – Sort column A column was sorted

Name Type Description

ListboxBuild

C Returns an integer specifying the canvas
event which caused the canvas handler to
be called.

 Put CanvasEventFN into evnum

ListboxSetColumns C Sets the number of columns in the listbox.

 ListboxSetColumns bid,ncols

ListboxSetRows C Sets the number of rows in the listbox.

 ListboxSetRows bid,nrows

ListboxDeleteAll C Deletes all the rows in columns in the
listbox.

 ListboxDeleteAll bid

ListboxAddRow C Adds a row with the given value being
placed in the first cell of the row.

 ListboxAddRow bid,value

ListboxInsertRow C Inserts a row before the given position and
places the given value in the first cell of the
row.

 ListboxInsertRow bid,row,value

ListboxDeleteRow C Deletes the specified row from the listbox.

 ListboxDeleteRow bid,row

ListboxSetWidths C Sets the widths of the columns. The value
passed can have a number of formats with
columns widths being separated by
commas.
 The width values can be in pixels as in
value = 125,56,92 for three columns
 In percentages as in value =
25%,35%,40% for three columns.
 If not enough columns widths are passed
then the remaining columns are evenly
spaced.

 ListboxSetWidths bid,value

ListboxSetRowHeight C Sets the default height of the rows in

pixels.

 ListboxSetRowHeight bid,value

ListboxAllowHeading C Allows the listbox to have or not have a
header.

 ListboxAllowHeading bid,value

ListboxSetHeading C Sets an individual column header to the text
in value.

 ListboxSetHeading bid,col,value

ListboxPressHeader C Causes the specified column of the header
to be pressed.

 ListboxPressHeader bid,col

ListboxRefresh C Refreshes or redraws the specified cell.

 ListboxRefresh bid,row,col

ListboxFill C Fills the listbox with the value given. This
can also be used to clear the listbox.

 ListboxFill bid,value

ListboxSetCellValue C Sets the value of the specified cell.

 ListboxSetCellValue bid,row,col,value

ListboxSetCellBold C Sets the text format of the specified cell to
bold or non-bold .

 ListboxSetCellBold bid,row,col,value

ListboxSetCellItalic C Sets the text format of the specified cell to
italic or non-italic.

 ListboxSetCellItalic bid,row,col,value

ListboxSetCellUnderline C Sets the text format of the specified cell to
underline or non-underline.

 ListboxSetCellUnderline bid,row,col,value

ListboxSetCellType C Sets the type of the specified cell.

 ListboxSetCellType bid,row,col,type

 type can be
 0 - default
 1 - normal
 2 - checkbox
 3 - editable.

ListboxSetCellAlign C Sets the text alignment of the specified
cell.

 ListboxSetCellAlign bid,row,col,align

 align can be
 0 - default
 1 - left
 2 - centre
 3 - right
 4 – decimal

ListboxSetCellOffset C Sets the decimal offset of the specified cell.
The offset is measured in pixels from the
right edge.

 ListboxSetCellOffset bid,row,col,offset

ListboxSetCellCheck C Sets the checkbox value of the specified
cell.

 ListboxSetCellCheck bid,row,col,value

ListboxSetCellTag C Sets the tag value of the specified cell. A
tag is a value not visible to the user that
can be used for many purposes included
categorising, counting and sorting.

 ListboxSetCellTag bid,row,col,value

ListboxSetCellEdit C Sets whether the specified cell is editable or
not.

 ListboxSetCellEdit bid,row,col,value

ListboxSetCellBorderLeft C Sets the left border type of the specified
cell.

 ListboxSetCellBorderLeft
bid,row,col,value

 value can be
 0 - default
 1 - none

 2 - thin dotted
 3 - thin solid
 4 - thick solid
 5 - double thin solid

ListboxSetCellBorderRight C Sets the right border type of the specified
cell.

 ListboxSetCellBorderRight
bid,row,col,value

ListboxSetCellBorderTop C Sets the top border type of the specified
cell.

 ListboxSetCellBorderTop
bid,row,col,value

ListboxSetCellBorderBottom C Sets the bottom border type of the
specified cell.

 ListboxSetCellBorderBottom
bid,row,col,value

ListboxSetColumnType C Sets the type of the specified column.

 ListboxSetColumnType bid,col,type

 type can be
 0 - default
 1 - normal
 2 - checkbox
 3 - editable.

ListboxSetColumnAlign C Sets the text alignment of the specified
column.

 ListboxSetColumnAlign bid,col,align

 align can be
 0 - default
 1 - left
 2 - centre
 3 - right
 4 – decimal

ListboxSetColumnOffset C Sets the decimal offset of the specified cell.
The offset is measured in pixels from the
right edge.

 ListboxSetColumnOffset bid,col,offset

ListboxSetScrollHorizontal C Sets whether or not the listbox has a
horizontal scroll bar.

 ListboxSetScrollHorizontal bid,value

ListboxSetScrollVertical C Sets whether or not the listbox has a
vertical scroll bar.

 ListboxSetScrollVertical bid,value

ListboxSetGridHorizontal C Sets the horizontal grid for the listbox.

 ListboxSetGridHorizontal bid,value

 value can be
 0 - default
 1 - none
 2 - thin dotted
 3 - thin solid
 4 - thick solid
 5 - double thin solid

ListboxSetGridVertical C Sets the vertical grid for the listbox where
value has the same attributes as the
horizontal grid.

 ListboxSetGridVertical bid,value

ListboxSetColumnSort C Sets sort direction of the specified column
in the listbox.

 ListboxSetColumnSort bid,col,direct

 direct can be
 0 - do not sort
 1 - descending
 2 – ascending

ListboxSort C Sort the listbox.

 ListboxSort bid

ListboxSetDragReOrder C Specifies whether or not the rows of the
listbox can be re-ordered by dragging them.

 ListboxSetDragReOrder bid,value

ListboxSetDrag C Specifies whether or not the row of the
listbox can be dragged out of it.

 ListboxSetDrag bid,value

ListboxSetFileDrop C Specifies whether or not the listbox can

accept files dropped onto it.

 ListboxSetFileDrop bid,value

ListboxSetDragDrop C Specifies whether or not the listbox can
accept text dropped onto it from other
controls.

 ListboxSetDragDrop bid,value

ListboxHighlightRow C Highlights the specified row of the listbox.

 ListboxHighlightRow bid,row

ListboxEventFN F Returns the event that occurred in the
listbox.

 Put ListboxEventFN(1) into num
 @ check for file dropped
 If num=6 Then
 DoSomething
 EndIf

 values are
 1 - Cell action either editable cell or
checkbox clicked.
 2 - Cell clicked.
 3 - Drag reorded rows.
 4 - Drag row.
 5 - Drop drag.
 6 - Drop file.
 7 - Double click.
 8 - Header pressed
 9 - Cell key down.
 10 - Cell got focus.
 11 - Cell text change.
 12 - Cell lost focus.
 13 - Sort column.

ListboxColumnsFN F Returns the number of columns in the
listbox.

 Put ListboxColumnsFN(1) into num

ListboxRowsFN F Returns the number of rows in the listbox.

 Put ListboxRowsFN(1) into num

ListboxLastIndexFN F Returns the number of the last row added

or inserted.

 Put ListboxLastIndexFN(1) into num

ListboxIndexFN F Returns the number of the row currently
selected.

 Put ListboxIndexFN(1) into num

ListboxCellValueFN F Returns the value of the specified cell.

 Put ListboxCellValueFN(1,row,col) into
num

ListboxCellTypeFN F Returns the type of the specified cell.

 Put ListboxCellTypeFN(1,row,col) into num

ListboxCellTagFN F Returns the tag value of the specified cell.

 Put ListboxCellTagFN(1,row,col) into num

 $S
ListboxCellCheckFN
Returns the checked value of the specified
cell..

 Put ListboxCellCheckFN(1,row,col) into
num

ListboxRowListFN F Returns the cell values of the specified row
as a list.

 Put ListboxRowListFN(1,row) into num

ListboxColumnListFN F Returns the cell values of the specified
column as a list.

 Put ListboxColumnListFN(1,col) into num

ListboxScrollPositionFN F Returns the row number of the top row
visible.

 Put ListboxScrollPositionFN(1) into num

ListboxScrollXPositionFN F Returns the horizontal scroll thumb position
for the listbox.

 Put ListboxScrollXPositionFN(1) into num

ListboxDragReOrderFN F Returns whether the listbox allows drag and
reorder of rows.

 Put ListboxDragReOrderFN(1) into num

ListboxDragFN F Returns whether the listbox allows dragging
of rows out of it.

 Put ListboxDragFN(1) into num

ListboxDroppedStateFN F Returns the state of the listbox drop.

 Put ListboxDroppedStateFN(1) into state

 where state can be
 0 - nothing dropped.
 1 - text dropped from another control.
 2 - one or more files or folders dropped.

ListboxDroppedSourceTypeFN F Returns the source type of the drop.

Put ListboxDroppedSourceTypeFN(1) into
num

ListboxDroppedSourceIDFN F Returns the index of the dropped source
object.

 Put ListboxDroppedSourceIDFN(1) into
num

ListboxDroppedTextFN F Returns actual dropped text.

 Put ListboxDroppedTextFN(1) into num

ListboxDroppedCountFN F Returns the number of objects dropped on
the listbox.

 Put ListboxDroppedCountFN(1) into num

ListboxDroppedRowFN F Returns the index of the row being dragged.

 Put ListboxDroppedRowFN(1) into num

ListboxFileCountFN F Returns the number of file or folders
dropped onto the listbox.

 Put ListboxFileCountFN(1) into fcount

ListboxFilePathsFN F Returns a path list of all the files dropped
onto the listbox .

 Put ListboxFilePathsFN(1) into plist

ListboxFileNamesFN F Returns a name list of all the files dropped
onto the listbox .

 Put ListboxFileNamesFN(1) into flist

ListboxFileTypesFN F Returns a type list of all the files dropped
onto the listbox. The type can be 0 for
folder and 1 for file.

 Put ListboxFileTypesFN(1) into tlist

ListboxFileExtensionsFN F Returns an extension list of all the files
dropped onto the listbox. This can be useful
in filtering file types, for instance when
deciding which files might be playable by a
movie control.

 Put ListboxFileExtensionsFN(1) into elist

ListboxRowClickedFN F Returns the index number of the row
clicked.

 Put ListboxRowClickedFN(1) into num

ListboxColumnClickedFN F Returns the index of the column clicked.

 Put ListboxColumnClickedFN(1) into num

ListboxKeyDownFN F Returns the keydown character.

 Put ListboxKeyDownFN(1) into num

ListboxLostFocusRowFN F Returns the number of the row which just
lost focus.

 Put ListboxLostFocusRowFN(1) into num

ListboxLostFocusColumnFN F Returns the number of the column which
just lost focus.

 Put ListboxLostFocusColumnFN(1) into
num

ListboxColumnSortedFN F Returns the number of the column which
was sorted.

 Put ListboxColumnSortedFN(1) into num

Sliders

Sliders are similar to scrollbars except they do not have end arrows and are usually
just dragged to change their output value in a more abrupt fashion.

Sliders each have their own action handler and can have many of their attributes
changed during runtime as listed below.

Slider properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the slider.
Height The height of the slider.

Name Type Description

SliderSetMode

C Sets whether the slider is enabled or not

 In the following bid is the slider control identity,
and value determines whether the slider will be
enabled or disabled. When value is zero the slider
is disabled and when non zero it is enabled.

 SliderSetMode bid,value

SliderSetView

C Sets whether the slider is visible or not

 In the following bid is the slider control identity,
and value determines whether the slider will be in
view or will be hidden. When value is zero the
slider is hidden and when non zero it is visible.

 SliderSetView bid,value

SliderSetLeft

C Sets the distance in pixels of the left side of the
slider from the left side of the card.

 SliderSetLeft bid,value

SliderSetTop C Sets the distance in pixels of the top of the slider

 from the card top.

 SliderSetTop bid,value

SliderSetWidth

C Sets the width of the slider in pixels.

 SliderSetWidth bid,value

SliderSetHeight

C Sets the height of the slider in pixels.

 SliderSetHeight bid,value

SliderModeFN

F The value returned indicates whether the specified
slider is enabled or disabled.

 A return value of non zero indicates the slider is
enabled otherwise it is disabled.

 Put SliderModeFN(3) into bokay

SliderViewFN

F The value returned indicates whether the specified
slider is visible or hidden.

 A return value of non zero indicates the slider is
visible otherwise it is hidden.

 Put SliderViewFN(3) into bokay

SliderLeftFN

F Returns the distance in pixels of the left side the
slider from the left side of the card.

 Put SliderLeftFN(1) into num

SliderTopFN

F Returns the distance in pixels of the top of the
slider from the top of the card.

 Put SliderTopBFN(1) into num

SliderWidthFN

F Returns the width of the slider control.

 Put SliderWidthFN(1) into num

SliderHeightFN

F Returns the height of the slider control.

 Put SliderHeightFN(1) into num

SliderSetMinValue C Sets the minimum value which the slider can report
or be set to.

 SliderSetMinValue bid,value

SliderSetMaxValue C Sets the maximum value which the slider can
report or be set to.

 SliderSetMaxValue bid,value

SliderSetValue C Sets the slider position and value.

 SliderSetValue bid,value

SliderSetLineStep C On the Windows platform sets the step value by
which the slider moves when the slider arrows are
moved. On the Macintosh platform it does nothing.

 SliderSeLineStep bid,value

SliderSetPageStep C The amount by which the slider value will change
when the slider track is clicked.

 SliderSetPageStep bid,value

SliderSetLiveScroll C Sets whether the slider will change its value in
realtime when moved.

 SliderSetLiveScroll bid,value

SliderMinValueFN F Returns the minimum value setting of the slider.

 Put SliderMinValueFN(1) into num

SliderMaxValueFN F Returns the maximum value setting of the slider.

 Put SliderMaxValueFN(1) into num

SliderValueFN F Returns the position value setting of the slider.

 Put SliderValueFN(1) into num

SliderLineStepFN F Returns the line step value setting of the slider.

 Put SliderLineStepFN(1) into num

SliderPageStepFN F Returns the page step value setting of the slider.

 Put SliderPageStepFN(1) into num

SliderLiveScrollFN F Returns whether the slider is set to live scroll or
not.

 Put SliderLiveScrollFN(1) into value

Scrollbars

Scrollbars allow the user to control the position or value of some other object such
as when scrolling continuous text or a picture, or changing a numeric value.
HyperNext supports both horizontal and vertical scrollbars.
Scrollbars each have their own action handler and can have many of their attributes
changed during runtime as listed below.

Scrollbar properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the scrollbar.
Height The height of the scrollbar.

Name Type Description

ScrollbarSetMode

C Sets whether the scrollbar is enabled or not

 In the following bid is the scrollbar control
identity, and value determines whether the
scrollbar will be enabled or disabled. When value is
zero the scrollbar is disabled and when non zero it
is enabled.

 ScrollbarSetMode bid,value

ScrollbarSetView

C Sets whether the scrollbar is visible or not

 In the following bid is the scrollbar control
identity, and value determines whether the
scrollbar will be in view or will be hidden. When
value is zero the scrollbar is hidden and when non
zero it is visible.

 ScrollbarSetView bid,value

ScrollbarSetLeft

C Sets the distance in pixels of the left side of the
scrollbar from the left side of the card.

 ScrollbarSetLeft bid,value

ScrollbarSetTop

C Sets the distance in pixels of the top of the
scrollbar from the card top.

 ScrollbarSetTop bid,value

ScrollbarSetWidth

C Sets the width of the scrollbar in pixels.

 ScrollbarSetWidth bid,value

ScrollbarSetHeight

C Sets the height of the scrollbar in pixels.

 ScrollbarSetHeight bid,value

ScrollbarModeFN

F The value returned indicates whether the specified
scrollbar is enabled or disabled.

 A return value of non zero indicates the scrollbar
is enabled otherwise it is disabled.

 Put ScrollbarModeFN(3) into bokay

ScrollbarViewFN

F The value returned indicates whether the specified
scrollbar is visible or hidden.

 A return value of non zero indicates the scrollbar
is visible otherwise it is hidden.

 Put ScrollbarViewFN(3) into bokay

ScrollbarLeftFN

F Returns the distance in pixels of the left side the
scrollbar from the left side of the card.

 Put ScrollbarLeftFN(1) into num

ScrollbarTopFN

F Returns the distance in pixels of the top of the
scrollbar from the top of the card.

 Put ScrollbarTopBFN(1) into num

ScrollbarWidthFN

F Returns the width of the scrollbar control.

 Put ScrollbarWidthFN(1) into num

ScrollbarHeightFN

F Returns the height of the scrollbar control.

 Put ScrollbarHeightFN(1) into num

ScrollbarSetMinValue C Sets the minimum value which the scrollbar can
report or be set to.

 ScrollbarSetMinValue bid,value

ScrollbarSetMaxValue C Sets the maximum value which the scrollbar can
report or be set to.

 ScrollbarSetMaxValue bid,value

ScrollbarSetValue C Sets the scrollbar position and value.

 ScrollbarSetValue bid,value

ScrollbarSetLineStep C Sets the amount by which the scroll bar position
will be incremented or decremented when the
arrows are clicked.

 ScrollbarSetLineStep bid,value

ScrollbarSetPageStep C The amount by which the scrollbar value will
change when the scrollbar track is clicked.

 ScrollbarSetPageStep bid,value

ScrollbarSetLiveScroll C Sets whether the scrollbar will change its value in
realtime when moved.

 ScrollbarSetLiveScroll bid,value

ScrollbarMinValueFN F Returns the minimum value setting of the scrollbar.

 Put ScrollbarMinValueFN(1) into num

ScrollbarMaxValueFN F Returns the maximum value setting of the
scrollbar.

 Put ScrollbarMaxValueFN(1) into num

ScrollbarValueFN F Returns the position value setting of the scrollbar.

 Put ScrollbarValueFN(1) into num

ScrollbarLineStepFN F Returns the line step value setting of the scrollbar.

 Put ScrollbarLineStepFN(1) into num

ScrollbarPageStepFN F Returns the page step value setting of the
scrollbar.

 Put ScrollbarPageStepFN(1) into num

ScrollbarLiveScrollFN F Returns whether the scrollbar is set to live scroll or
not.

 Put ScrollbarLiveScrollFN(1) into value

Progress Bars

 Progress bars give a visual indication of a tasks progress and can also be clicked on
to change their value.

Setting their maximum value to 0 causes the progress bar to display a Barber Pole
and this is suitable when a task’ s state is indeterminate

Progress bars each have their own action handler and can have many of their
attributes changed during runtime as listed below.

Progress bar properties set at design time

Property Description

Name Currently this is not used at runtime.
Left The position in pixels from the left side of the card.
Top The position in pixels from the top of the card.
Width The width of the progress bar.
Height The height of the progress bar.

Name Type Description

ProgressbarSetMode

C Sets whether the progress bar is enabled or not

 In the following bid is the progress bar control
identity, and value determines whether the progress
bar will be enabled or disabled. When value is zero
the progress bar is disabled and when non zero it is
enabled.

 ProgressbarSetMode bid,value

ProgressbarSetView

C Sets whether the progress bar is visible or not

 In the following bid is the progress bar control
identity, and value determines whether the progress
bar will be in view or will be hidden. When value is
zero the progress bar is hidden and when non zero it
is visible.

 ProgressbarSetView bid,value

ProgressbarSetLeft C Sets the distance in pixels of the left side of the

 progress bar from the left side of the card.

 ProgressbarSetLeft bid,value

ProgressbarSetTop

C Sets the distance in pixels of the top of the
progress bar from the card top.

 ProgressbarSetTop bid,value

ProgressbarSetWidth

C Sets the width of the progress bar in pixels.

 ProgressbarSetWidth bid,value

ProgressbarSetHeight

C Sets the height of the progress bar in pixels.

 ProgressbarSetHeight bid,value

ProgressbarModeFN

F The value returned indicates whether the specified
progress bar is enabled or disabled.

 A return value of non zero indicates the progress
bar is enabled otherwise it is disabled.

 Put ProgressbarModeFN(3) into bokay

ProgressbarViewFN

F The value returned indicates whether the specified
progress bar is visible or hidden.

 A return value of non zero indicates the progress
bar is visible otherwise it is hidden.

 Put ProgressbarViewFN(3) into bokay

ProgressbarLeftFN

F Returns the distance in pixels of the left side the
progress bar from the left side of the card.

 Put ProgressbarLeftFN(1) into num

ProgressbarTopFN

F Returns the distance in pixels of the top of the
progress bar from the top of the card.

 Put ProgressbarTopBFN(1) into num

ProgressbarWidthFN

F Returns the width of the progress bar control.

 Put ProgressbarWidthFN(1) into num

ProgressbarHeightFN

F Returns the height of the progress bar control.

 Put ProgressbarHeightFN(1) into num

ProgressbarSetMinValue C Sets the minimum value which the progress bar can
report or be set to.

 ProgressbarSetMinValue bid,value

ProgressbarSetMaxValue C Sets the maximum value which the progress bar can
report or be set to.

 ProgressbarSetMaxValue bid,value

ProgressbarSetValue C Sets the progress bar position and value.

 ProgressbarSetValue bid,value

ProgressbarMinValueFN F Returns the minimum value setting of the progress
bar.

 Put ProgressbarMinValueFN(1) into num

ProgressbarMaxValueFN F Returns the maximum value setting of the progress
bar.

 Put ProgressbarMaxValueFN(1) into num

ProgressbarValueFN F Returns the position value setting of the progress
bar.

 Put ProgressbarValueFN(1) into num

Timers

A timer control resides on a Card and calls a handler/script at times determined by
its period setting. This should not be confused with the Main Timer which is a global
timer as detailed in the MainTimer section.

When the card on which the timer resides goes out of focus any associated timers
will pause until their card comes back into focus again. Timers can only execute their
handler when no other script is running. The timer script can be edited via the Script
button on the Properties window. Timers are not yet supported in plug-ins.
Although timers will work within the Developer they will not be saved or incorporated
into the built plug-in.

 The firing state of a timer cannot be saved and therefore when a stack is first
loaded all timers are switched off with their periods set to a default value of 1000
ms. If a timer should be working then it needs to be set up when its card loads.

Timer Modes

Mode Description

Off The timer is effectively disabled and will play no part in the

operation of the stack. Its mode can be changed at runtime.
Single The timer counts down and when its count reaches zero its script

executes. After execution the timer will enter Off mode.
Periodic The timer will count down and when its count reaches zero its

script executes. After execution the timer will remain in Periodic
mode and the cycle will recommence.

Name Type Description

TimerSet

C This sets the specified timer into one of three
modes, off, single or multi. In single mode, the
timer will fire just once after its countdown has
reached zero and it will then switch into off mode.
in multi mode it will fire and then start its
countdown again.

 TimerSet tid,mode,period

 mode : 0 = off
 1 = single
 2 = multi

 period: measured in milliseconds,
 i.e 1220 ms = 1.220 seconds

TimerOff

C This switches the specified timer into off mode.

 TimerOffB tid

11 Canvas Graphics

 Most computer languages having a command for copying areas of image use a
complex looking command requiring many parameters. In contrast, HyperNext tries to
makes it easier for beginners by breaking the usual command into three separate
commands. Firstly the image source must be specified, then the image target,
followed by the command that actually copies the image area.

These commands are CanvasSource, CanvasTarget and CanvasCopy.

 With these commands it is possible to rapidly copy and scaling areas of canvases.
Canvases can also be saved - see the section on Files Graphics.

Examples

 One off screen buffer is also available for holding and processing images. It is
accessible using canvas identity 0.

Clearing a buffer

 @ Buffer --> white
 CanvasClear 0,255,255,255

 @ Buffer --> red
 CanvasClear 0,255,0,0

 @ Canvas 1 on the card in focus
 CanvasClear 1,255,255,255

Copying

 @ Copy canvas 1 to canvas 2, do not scale
 CanvasSource 1,0,0,0,0
 CanvasDest 2,0,0,0,0
 CanvasCopyAll

 @ Copy canvas 1 to canvas 2, scale to fit canvas 2
 CanvasSource 1,0,0,0,0
 CanvasDest 2,0,0,0,0
 CanvasCopyScale

 @ Copy canvas 1 to canvas 2, area 1 into area 2
 CanvasSource 1,50,50,100,100
 CanvasDest 2,200,200,80,80
 CanvasCopyArea

Name Type Description

CanvasClear

C Clears a canvas by filling it with the specified
colour.

 CanvasClear 1,red,green,blue

CanvasSetBuffer

C Sets the size of an off screen buffer and fills it
with the colour white.

 CanvasSetBuffer width,height

CanvasSource

C Defines the source image area, an area of a
canvas or off screen buffer.

 cid = source identity, 0 - buffer, >0 - a canvas

 CanvasSource cid,x,y,width,height

If some of the parameters are not needed, such
as when copying whole images then simply
replace the redundant parameters with 0 or
whatever, they just become place holders for
the compiler and do not slow down the runtime.
For instance

 @ Copying all of canvas 12
 CanvasSource 12,0,0,0,0

CanvasDest

C Defines the destination image area, an area of a
canvas or off screen buffer.

 cid = destination identity,
 0 - buffer, >0 - a canvas

 CanvasDest cid,x,y,width,height

CanvasCopyArea

C Copies the source area to the destination area
with scaling. This is the most general purpose
copying command and it can perform the
operations of both the CanvasCopyAll and
CanvasCopyScale commands although it needs
all parameters specifying.

 CanvasCopyArea

CanvasCopyAll

C Copies the whole source image to the
destination without scaling or changing
coordinates.

If the source image is larger than the destination
then some the source will go off the destination.

 CanvasCopyAll

CanvasCopyScale

C Copies and scales the source image to fit the
destination image.

 CanvasCopyScale

12 Playing Sounds & Music

HyperNext has commands for playing sound files and MP3s. On Windows machines
QuickTime needs to be installed in order to play some sound formats.

There are five dedicated sound channels and any sound or music file must be
allocated to a channel before it can be played.

Commands & Functions

Name Type Description

SoundPlay

C Plays the given sound file once on the specified
sound channel where the filename refers to a local
file. The filename can also refer to the local
pathname to the file.

 SoundPlay(channel,filename)

SoundLoop

C Plays the given sound file repeatedly on the
specified sound channel where the filename refers
to a local file. The filename can also refer to the
local pathname to the file.

 SoundLoop(channel,filename)

SoundPlayAbs C Plays the given sound file once on the specified
sound channel where the filename refers to the
absolute path to a file.

 SoundPlayAbs(channel,filename)

SoundLoopAbs C Plays the given sound file repeatedly on the
specified sound channel where the filename refers
to the absolute path to a file.

 SoundLoopAbs(channel,filename)

SoundVolume C Sets the volume for the specified sound channel.
The value ranges between 0 to 256.

 SoundVolume(channel,value)

SoundStop C Immediately stops the sound file being played.

 SoundStop(channel)

SoundIsPlayingFN F Returns 1 if the specified sound channel is playing
a sound otherwise it returns 0.

 Put SoundIsPlayingFN(sid) into value

13 Note Player

HyperNext supports note playing based upon QuickTime Musical instruments. On
Windows machines note playing requires QuickTime to be installed. There are 128
instruments available and a list of their names can be accessed using a HyperNext
function.

 Three different approaches to playing notes are supported. The first two are useful
for playing single notes whereas the third allows melodies or sequences of notes to
be defined and played. At the present time HyperNext only supports one Note
channel so if a melody is playing then any PlayPitch or PlayNote command will be
ignored.

(1) Notes can be played individually using the PlayPitch command which specifies
the instrument, pitch, velocity and duration. This method is useful for allowing the
user to play a particular note, perhaps via a keyboard displayed on a card.

(2) Notes can be played individually using the PlayNote command which specifies the
instrument, octave, note, velocity and duration. This method is useful for allowing
the user to play a particular note, perhaps via a keyboard displayed on a card.

(3) Notes can be played as group using the MelodyPlay command. This is more
powerful than the PlayPitch/PlayNote commands and gives greater control over the
musical output.

Commands & Functions

Name Type Description

PlayPitch

C This plays a note with pitch in the range 0 to 127
where middle C equals 60 and higher values give
higher pitches. Changing the value by 1 changes
the pitch by one half. The note can be stopped
using PlayEnd. Velocity represents how hard the
key is pressed and ranges from 0 to 127 where 0
signifies not being pressed and 127 is the hardest
(loudest).

 PlayPitch instrument,pitch,velocity,duration

 instrument = 1 to 128
 pitch = 0 to 127
 velocity = 0 to 127
 duration = milliseconds

PlayNote

C This plays a single note where middle C is in the
fifth octave. The note can be stopped using
PlayEnd. Notes have the form of A B C D E F G.

 PlayNote
instrument,octave,note,velocity,duration

IsPlayingFN F This returns 1 if a note is currently being played
otherwise it returns 0.

PlayEnd C This immediately ends the note currently being
played.

MelodySet C Specifies the melody to be played by the
MelodyPlay command. For example

 MelodySet waltz

The melody is a sequence of notes held in a
variable and it can have a complex nature
depending upon the required melody. Each note or
descriptor is separated by a space and the
following notes and descriptors are understood by
the melody note player:-

 notes A B C D E F G
 # raises a note by half a step, eg A#
 - lowers a note by half a step. eg G-
 O+ raises octave.
 O- lowers octave, the melody is assumed
to start off in the fifth octave.
 i num changes the emphasis on a note,
higher numbers give louder notes.
 L num changes the length of notes. num
determines the length, 1 is whole note,
 4 is quarter note.
 optionally a . (dot) may be added to increase
 the length.
 p num rests (pauses) for num where 1 is a
whole rest, 8 is an eight rest etc.
 T num changes the tempo where num
specifies the number of quarter notes.

MelodyPlay C Plays the melody specified by the MelodySet
command for the specified number of times. If the
melody is already playing this command will be
ignored.

 @ Play tune 3 times
 MelodyPlay 3

MelodyLoop C Sets the number of times the melody is to be
played. This can be changed while the melody is
playing and its value is decremented each time a
melody is finished. Its current value can be found
using MelodyLoopsFN.

MelodyLoopsFN F Returns the current loop value. If the initial loop
was set at 1 and the melody is still playing then
this value will be 1. It is only decremented at the
end of a melody.

MelodyInterval C This sets the interval between one loop ending and
the next loop starting. Its default value is 2000
milliseconds and it can be changed while a melody
is playing.

 @ set to 1.5 seconds
 MelodyInterval 1500

MelodySpeed C Specifies the speed or tempo for the melody. The
default speed is 1.0 but it can be made slower or
faster. For instance, values of 0.5 and 2.0 set the
speed to half speed and double speed
respectively. This can be changed while the
melody is playing.

MelodyPause C This pauses the melody currently being played.

MelodyContinue C If a melody is paused this continues its playing.

MelodyEnd C The melody playing is stopped, it cannot be
continued although it can be restarted using
MelodyPlay.

CurrentNoteFN F Returns the position in the melody of the current
note being played.

MelodyLengthFN F Returns the length in notes of the current melody.

SetInstrumentName C Changes the current instrument to the named
instrument. The default instrument is Grand Piano
and it can be changed while the melody is playing.

SetInstrumentNumber C Sets the instrument number which ranges from 1
to 128. The instrument can be changed while a
melody is playing.

InstrumentNowFN F Returns the number of the current instrument. The
name of the current instrument can be found by
using the InstrumentNameFN function.

 Local inum,iname
 Put InstrumentNowFN into inum
 Put InstrumentNameFN(inum) into iname

InstrumentListFN F Returns a list containing the names of all the 128
instruments.

InstrumentNumberFN F When given a name it returns the number of that
instrument. If no such instrument exists then 0 is
returned.

InstrumentNameFN F When given an identity in the range 1 to 128 it
returns the corresponding instrument name
otherwise it returns empty.

MaxInstrumentsFN F Returns the number of instruments available,
currently it is 128.

Instrument List

Instruments

Number Name

1 Acoustic Grand Piano
2 Bright Acoustic Piano
3 Electric Grand Piano
4 Honkytonk Piano
5 Rhodes Piano
6 Chorused Piano
7 Harpsichord
8 Clavinet
9 Celesta

10 Glockenspiel
11 Music Box
12 Vibraphone
13 Marimba
14 Xylophone
15 Tubular Bells
16 Dulcimer
17 Hammond Organ
18 Percussive Organ
19 Rock Organ
20 Church Organ
21 Reed Organ
22 Accordion
23 Harmonica
24 Tango Accordion
25 Acoustic Nylon Guitar
26 Acoustic Steel Guitar
27 Electric Jazz Guitar
28 Electric Clean Guitar
29 Electric Guitar Muted
30 Overdriven Guitar
31 Distortion Guitar
32 Guitar Harmonics
33 Acoustic Fretless Bass
34 Electric Bass Fingered
35 Electric Bass Picked
36 Fretless Bass
37 Slap Bass 1
38 Slap Bass 2
39 Synth Bass 1
40 Synth Bass 2
41 Violin
42 Viola

43 Cello
44 Contrabass
45 Tremolo Strings
46 Pizzicato Strings
47 Orchestra Harp
48 Timpani
49 Acoustic String Ensemble
50 Acoustic String Ensemble 2
51 Synth Strings 1
52 Synth Strings 2
53 Aah Choir
54 Ooh Choir
55 SynthVox
56 Orchestra Hit
57 Trumpet
58 Trombone
59 Tuba
60 Muted Trumpet
61 French Horn
62 Brass Section
63 Synth Brass 1
64 Synth Brass 2
65 Soprano Sax
66 Alto Sax
67 Tenor Sax
68 Baritone Sax
69 Oboe
70 English Horn
71 Bassoon
72 Clarinet
73 Piccolo
74 Flute
75 Recorder
76 Pan Flute
77 Bottle Blow
78 Shakuhachi
79 Whistle
80 Ocarina
81 Square Wave
82 Saw Wave
83 Calliope
84 Chiffer
85 Charang
86 Solo Vox
87 5th Saw Wave
88 Bass & Lead
89 Fantasy
90 Warm
91 Polysynth
92 Choir

93 Bowed
94 Metal
95 Halo
96 Sweep
97 Ice Rain
98 Sound Tracks
99 Crystal
100 Atmosphere
101 Brightness
102 Goblins
103 Echoes
104 Space
105 Sitar
106 Banjo
107 Shamisen
108 Koto
109 Kalimba
110 Bag Pipe
111 Fiddle
112 Shannai
113 Tinkle Bell
114 Agogo
115 Steel Drums
116 Woodblock
117 Timpani
118 Melodic Tom
119 Synth Drum
120 Reverse Cymbal
121 Guitar Fret Noise
122 Breath Noise
123 Seashore
124 Bird Tweet
125 Telephone Ring
126 Helicopter
127 Applause
128 Gunshot

14 Printing

HypThis section details how to handle printing from within your program. The printer
handler can send output to a real printer or PDF depending upon the Operating
System printer options.

Printing generally occurs in two stages:-
Firstly, PageSetup is called allowing the user to specify the actual printer, paper size,
and the layout, either portrait or landscape. PageSetup then returns printer settings
describing the size of the paper and the size of the printable area. The program then
uses these printer settings to guide the generation of graphics.
Secondly, OpenPrinter is called allowing the user to specify the number of copies, and
page ranges to be printed. This actually connects the printer and program so that
any text or graphics written to an offscreen buffer can be sent to the printer, one
page at a time. The printer and program will remain connected until the printer
connection is closed.

Canvas zero is used as an offscreen buffer. Using a canvas as a buffer allows graphics
to be drawn directly to it, as well as images, text etc.

The margins are set to a standard value and cannot be made smaller. However, thay
can be increased by using the PageSetup settings to direct the graphics to a specific
area of the offscreen buffer.

All printer measurements are in pixels except for printer resolution which is in dots
per inch(dpi).

NOTE,
Always close the printer otherwise HyperNext will hang as the printer will indefinitely
wait for the next page to arrive.

Commands & Functions

Name Type Description

PrinterInitialisedFN

F If the printer has been initialised it will return the
value 1, otherwise it will be 0 . The printer can be
initialised by calling the PrinterPageSetup
command.

 Put PrinterInitialised FN into okay

PrinterPageSetup

C This calls the Page Setup dialog box allowing the
user to choose the printer, layout and paper sizes
etc. The program does not wait at this instruction
until the dialog box is closed so if you intend to
use the printer setting immediately after the
dialog box closes you should make a loop which
periodically checks whether the dialog box has
closed or not.

 PrinterPageSetup

The following example shows how to respond to
the page setup dialog box. This does not send any
content to the printer but just sets it up and then
assigns values to the page size, layout etc as
used by the associated HyperNext functions for
later use by the program.

 Global printerString
 Local pstatus,t,okay,s1

 Put 0 into pstatus
 PrinterPageSetup

 SetMouseCursor(1)
 For t=1 to 25
 Wait(1,1000)
 Put PrinterInitialisedFN into okay
 If okay=1 Then
 Put PrinterPageSetupFN into pstatus
 If pstatus>0 Then
 Put PrinterSettingsFN into printerString
 ExitFor
 EndIf
 EndIf
 EndFor
 SetMouseCursor(3)

PrinterPageSetupFN F Returns 0 if the PrinterPage dialog box is still
open, 1 if the user cancelled the operation, and 2
if they accepted the settings.

 Put PrinterPageSetupFN into pstate

PrinterSettingsFN F Returns the current Printer Page settings. The
setting string format is highly dependent upon the
computer platform. On the Macintosh OS X
platform they are a multi-line string and on
Macintosh OS 9 and Windows platforms a more
complex format. If the settings are to be saved to
a file it is best to use a binary save option.

 Put PrinterSettingsFN into psettings1

PrinterPageRestore C Restores the Page Setup using previously stored
printer settings.

 PrinterPageRestore(psettings1)

PrinterTest C Tests the printer by sending a page to it
containing a border, a large circle and some text
all in black. The Printertest command only works
when a connection has been made to the printer
device using OpenPage.

 PrinterTest

PrinterSendPage C Sends the current graphics to the printer and then
creates a new page. The printer will not quit after
this command but will wait for the close
command.

 PrinterSendPage

PrinterClose C Sends any waiting graphics to the printer and then
closes it. Closing the printer breaks the
connection between the program and the printer
so allowing the program to continue. If the printer
is not closed then the program will hang
indefinitely.

 PrinterClose

PrinterSetHorizontalRes C Sets the horizontal resolution of the printer. The
default settings are 72dpi but can be changed up
to the maximum supported by the printer. If you
want the maximum and do not know its value
simply pass -1 as the parameter. Note, changing
the resolution does not change the print size of
your graphics, it only changes the print quality. If

the resolution is doubled then your graphics can
be doubled in size to take advantage of the new
resolution.

 PrinterSetHorizontalRes(hres)

PrinterSetVerticalRes C Sets the vertical resolution of the printer. The
default settings are 72dpi but can be changed up
to the maximum allowed by the printer. If you
want the maximum allowed by the printer simply
pass -1 as the parameter.

 PrinterSetVerticalRes(vres)

PrinterHorizontalResFN F Returns the current horizontal resolution
measured in dpi.

 Put PrinterHorizontalResFN into hres

PrinterVerticalResFN F Returns the current vertical resolution measured
in dpi.

 Put PrinterVerticalResFN into vres

PrinterHorizontalMaxFN F Returns the current maximum horizontal
resolution measured in dpi. If the resolution is
changed it will take effect after a PageSetup or
OpenPrinter directive is called.

 Put PrinterHorizontalMaxFN into hres

PrinterVerticalMaxFN F Returns the current maximum vertical resolution
measured in dpi.

 Put PrinterVerticalMaxFN into vres

PrinterPageLeftFN F This returns the left side of the printable area. At
the present time this always returns 0 as the
margins are set automatically.

 Put PrinterPageLeft FN into pleft

PrinterPageTopFN F This returns the top of the printable area. At the
present time this always returns 0 as the margins
are set automatically.

 Put PrinterPageTopFN into ptop

PrinterPageHeightFN F Returns the height of the paper as set by
PageSetup.

 Put PrinterPageHeightFN into pheight

PrinterPageWidthFN F Returns the width of the paper as set by
PageSetup.

 Put PrinterPageWidthFN into pwidth

PrinterHeightFN F Returns the height of the printable area, that is
the graphics area. When using Canvas(0) as an
offscreen buffer its height should be set to this
value.

 Put PrinterHeightFN into height

PrinterWidthFN F Returns the width of the printable area, that is the
graphics area. When using Canvas(0) as an
offscreen buffer its width should be set to this
value.

 Put PrinterWidthFN into width

PrinterOpenDefaultFN F Attempts to open a connection to the default
printer without displaying an OpenPrinter dialog
box and if successful it creates a new graphics
page. The function returns 1 if successful and 0 if
not. When the paramater ps is 0 the current Page
Setup settings are used and when 1 it will display
the Page Setup dialog box.

 Put PrinterOpenDefaultFN(ps) into pokay

PrinterOpenDialogFN F Opens a dialog box allowing the user to open a
connection with a printer. It automatically creates
a new graphics page. If the connection was made
successfully then the function returns 1 otherwise
it returns 0. When the paramater ps is 0 the
current Page Setup settings are used and when 1
it will display the Page Setup dialog box.

 Put PrinterOpenDialogFN(ps) into pokay

PrinterCopiesFN F Returns the number of document copies
requested by the user via the OpenPrinterDialog
box.

 Put PrinterCopiesFN into ncopies

PrinterFirstPageFN F Returns the first page number of the document to
be printed as requested by the user via the
OpenPrinterDialog box.

 Put PrinterFirstPageFN into firstpage

PrinterLastPageFN F Returns the last page number of the document to
be printed as requested by the user via the
OpenPrinterDialog box.

 Put PrinterLastPageFN into lastpage

15 Files

This section details the commands available for finding out about folder and files, and
for creating, copying and deleting them. Generally there are two ways of refering to a
file, either local to the the project/stack/standalone folder of else absolute where a
full pathname is specified. Most of the time it is best to use local files as they will be
within your directory and unlikely to go astray or be interfered with.

These commands can also be used to set the attributes of the files, attributes such
as Creator and Type.

Once a file has been either located or created it can then be operated upon using the
binary/text file options given in both this section and in the Text Files section.

Files and folders are accessed via handles and if the value of a handle is zero then the
file or folderitem does not exist.

General Files

Name Type Description

VolumeCountFN F Returns the number of volumes such as hard disks

on the computer.

 Put VolumeCountFN into vcount

VolumeListFN F Returns a list containing the name of each volume
on a separate line.

 Put VolumeListFN into vlist

VolumeNameFN F Returns the name of the numbered volume. Volume
numbers start at 1 and if the number is out of range
the function will return an empty value.

 Put VolumeNameFN(vnum) into vname

MyDirectoryFN F Returns the absolute address of the running project,
stack or standalone project. Most file operation work
locally, and refer to folders and files within the
running project’s folder.

 Put MyDirectoryFN into myfolder

MyFolderFN F Exactly the same as the MyDirectory function.

 Put MyFolderFN into myfolder

ApplicationFolderFN F Returns the absolute path to the folder containing
either HyperNext Creator, Developer, Player or a
Standalone depending upon which type of program
the function is called from.

 Put ApplicationFolderFN into appfolder

FolderUserAppDataFN F Returns the absolute path to the folder where
application preferences should be stored.

 Put FolderUserAppDataFN into prefsfolder

for example with a user called John

 Windows platform
 C:\Documents and Settings\John\Application
Data

 OS X platform
 OS Tiger:Users:John:Library:Preferences

 OS 9 platform
 OS 9.2.1:System Folder:Preferences

FolderUserMainFN F Returns the absolute address of the main folder for
the currently logged in user.

 Put FolderUserMainFN into mainwhere

for example with a user called John

 Windows platform
 C:\Documents and Settings\John

 OS X platform
 OS Tiger:Users:John

 OS 9 platform
 OS 9.2.1

FolderUserDocumentsFN F Returns the absolute address of the documents
folder for the currently logged in user.

 Put FolderUserDocumentsFN into docswhere

FolderUserDesktopFN F Returns the absolute address of the desktop folder
for the currently logged in user.

 Put FolderUserDesktopFN into deskwhere

FolderSeparatorFN F Returns the folder separator for the platform which
the program is running on. For Windows it is a \
character and for Macintosh a : character

 Put FolderSeparatorFN into sep

FolderItemGet

C When given the path name of a local folder or file it
returns details about it. If the item does not exist
then the returned details can be used to create the
item and then access it.

 FolderItemGet(fname,fhandle,fdetails,ftypes,fpaths,
fnames,fextens)

where
 fname - path name of the folder.
 fhandle - an integer referring to the particular
 file or folder.
 fdetails - a list of folder attributes - see section
 Folder/File Details.
 ftypes - a list giving the types of item contained
 within the folder.
 1 = folder, 0 = file.
 fpaths - a list giving the pathnames of
folders/files
 contained within the folder.
 fnames - a list giving the names of folders/files
 contained within the folder.
 fextens - a list giving the extensions of
folders/files
 contained within the folder.

FolderItemGetAbs C Similar to FolderItemGet except it uses an absolute
filename/path. When given the path name of a
folder or of a file it returns details about it. If the
item does not exist then the returned details can be
used to create the item and then access it.

 FolderItemGetAbs(fname,fhandle,fdetails,ftypes,
fpaths,fnames,fextens)

FolderItemAsk

C Presents a dialog box allowing the user to choose a
folder.

 FolderItemAsk
fname,fhandle,fdetails,ctypes,cnames

FolderItemNew

C Presents a dialog box allowing the user to choose
the name and location of where a new folder should
be placed. This does not create the folder but
returns a handle and details about the potential
folder.

 FolderItemNew
name,fhandle,fdetails,ctypes,cnames

FileGet

C When given the local path name of a file it returns
details about it. If the file does not exist then the
returned details can be used to create the file and
then access it.

 FolderGet(fname,fhandle,fdetails,ftypes,fpaths,
fnames,fextens)

where
 fname - path name of the folder.
 fhandle - an integer referring to the particular
 file or folder.
 fdetails - a list of folder attributes - see section
 Folder/File Details.
 ftypes - a list giving the types of item contained
 within the folder.
 1 = folder, 0 = file.
 fpaths - a list giving the pathnames of
folders/files
 contained within the folder.
 fnames - a list giving the names of folders/files
 contained within the folder.
 fextens - a list giving the extensions of
folders/files
 contained within the folder.

FileGetAbs C When given the absolute path name of a file it
returns details about it. If the file does not exist
then the returned details can be used to create the
file and then access it.

FolderGetAbs(fname,fhandle,fdetails,ftypes,fpaths,
fnames,fextens)

where
 fname - path name of the folder.
 fhandle - an integer referring to the particular
 file or folder.
 fdetails - a list of folder attributes - see section
 Folder/File Details.
 ftypes - a list giving the types of item contained
 within the folder.
 1 = folder, 0 = file.
 fpaths - a list giving the pathnames of
folders/files
 contained within the folder.
 fnames - a list giving the names of folders/files
 contained within the folder.

 fextens - a list giving the extensions of
folders/files
 contained within the folder.

FileAsk

C Presents a dialog box allowing the user to choose a
file which already exists.

 FileAsk fname,fhandle,fdetails

FileAskFilter C Presents a dialog box allowing the user to choose a
file which already exists and has the specified file
type. If the filter parameter is empty then all files
are shown.

 FileAskFilter fname,filter,fhandle,fdetails

 Eg, filter might be = ‘HNapp’ etc

FileNew

C Presents a dialog box allowing the user to choose
the name and location of where a new file should be
placed. This does not create the file but returns a
handle and details about the potential file.

 FileNew fname,fhandle,fdetails

FolderItemFree

C Frees the space used by a specified folder/file
handle.

 FolderItemFree fhandle

FolderItemRename

C Renames the folder specified by the folder handle.

 FolderItemRename fhandle,fname

FolderItemDelete

C Deletes the folder specified by the folder handle.
The folder must be empty otherwise the command
has no effect. To delete a folder containing
folders/files, one must first obtain details about that
folder and then use them to delete each item in
turn.

 FolderItemDelete fhandle

FolderItemDeleteAll C Deletes the folder specified by the folder handle.
The specified folder need not be empty as this
command will delete all subfolders and files within
the folder.

 FolderItemDeleteAll(fhandle)

FolderItemMove

C Moves the folder specified by the folder handle to
the location specified by the destination handle.

 FolderItemMove fhandle,dhandle

FolderItemCopy

C Copies the folder specified by the folder handle to
the location specified by the destination handle.

 FolderItemCopy fhandle,dhandle

FolderItemLaunch

C Launches the application specified by the given file
handle. If value is zero then the application will run
in the background, and if non zero will run in the
foreground.

 FolderItemLaunch fhandle,value

FolderItemVisible

C Sets the visibility of the folder/file specified by the
folder item handle. If value is zero then it will be
invisible, and if non zero will be visible.

 FolderItemVisible fhandle,value

FolderItemLocked

C Lock or unlocks the folder/file specified by the
folder item handle. If value is zero then it will be
unlocked, and if non zero will be locked.

 FolderItemLocked fhandle,value

FolderItemMacType

C Sets the 4 character Mac Type of the file specified
by the folder item handle.

 FolderItemMacType fhandle,value

FolderItemMacCreator

C Sets the 4 character Mac Creator of the file
specified by the folder item handle.

 FolderItemMacCreator fhandle,value

CreateFolder

C Creates a folder specified by the folder item handle
and returns a folder index which can be used to
actually access the folder and change its name.

 CreateFolder fhandle,findex

Folder/File Details

The details returned from accessing a file or folder are given as a list of attributes
separated by carriage returns.

 1 - Name of file or folder.
 2 - 1 if it exists, 0 otherwise.
 3 - 1 if it is a folder, 0 if a file.
 4 - 1 if an alias.
 5 - 1 if visible.
 6 - 1 if locked.
 7 - 1 if writeable.
 8 - 1 if readable.
 9 - the absolute path.
 10 - the number of items in the folder.
 11 - The Mac Type code.
 12 - The Mac Creator code.
 13 - the creation short date.
 14 - the creation short time.
 15 - the modification short date.
 16 - the modification short time.
 17 - the display name.
 18 - 1 if the extension is visible.
 19 - the length of the data fork.
 20 - the length of the resource fork.
 21 - the Macintosh Directory ID - an integer.
 22 - the Macintosh VRefNum - an integer.
 23 - Actual name including extension.
 24 - filename extension.
 25 - type (user created).
 26 - Parent directory absolute pathname.

Binary Files

A binary file is a computer file whose characters can contain numeric values between
0 and 255. To the human eye they are generally not readable as they contain raw
data. Binary files are used for data, multi-media and executable programs.

To operate on a binary file a file handle must first be obtained. This file handle can
then be used to create a file variable so enabling operations to be carried out on that
file.

Listed below are commands for reading and writing binary files. Some of the
commands and functions can be used for both reading and writing so they are
therefore listed under each mode.

Note, the current read/write position within the file is automatically updated
whenever a read/write operation is carried out.

Name Type Description

CreateBFile

C Creates a binary file specified by the folder item
handle and returns a file index which can be used to
actually access the file, change its name, read and
write to it.

 CreateBFile fhandle,findex

OpenAsBFile

C Opens an existing binary file specified by the folder
item handle and returns a file index which can be
used to actually access the file, change its name,
read and write to it.

 OpenAsBFile fhandle,findex

FileSetBPosition

C Sets the position in the binary file where the next
read/write will take place.

 FileSetBPosition findex,fpos

CloseBFile C Close the specified binary file.

 CloseBFile findex

FileSetBLength

C Sets the length of the binary file data fork. If the
specified length is less than the actual length then
the data fork will be truncated.

 FileSetBLength findex,flength

EndBFileFN

F Returns a value indicating whether the position
within the specified binary file has reached the end
or not. If zero then the end has not been reached
and if 1 then the end of the binary file has been
reached.

 Put EndBFileFN(findex) into field 1

LengthBFileFN

F Returns the length of the data fork of the specified
binary file.

 Put LengthBFileFN(findex) into flen

PositionBFileFN

F Returns the current read/write position within the
specified binary file.

 Put PositionBFileFN(findex) into fpos

ReadBByte C Reads a single byte from the current position. The
byte value ranges from 0 to 255.

 ReadBByte findex,byte

WriteBByte C Writes a single byte to the current position of the
specified binary file. The byte value ranges from 0
to 255.

 WriteBByte findex,byte

ReadBVariable C Reads a variable from the current position. The
variable has a string form and can be over 2GB in
length.

 ReadBVariable findex,svar
 Put svar into field 1

WriteBVariable C Writes a variable at the current position of the
specified binary file.

 Put field 1 into svar
 WriteBVariable findex,svar

ReadBBoolean C Reads a boolean value from the current position.
The value can be either 0 or 1.

 ReadBBoolean(findex,var)

WriteBBoolean C Writes a boolean value to the current position of the
specified binary file. The value can be either 0 or 1
but if the value is non zero then 1 will be written.

 WriteBoolean(findex,value)

ReadBShort C Reads a short integer from the current position. A

short variable holds two bytes and its value ranges
from -32768 to 32767.

 ReadBShort(findex,var)

WriteBShort C Writes a short integer to the current position of the
specified binary file.

 WriteBShort(findex,value)

ReadBLong C Reads a long integer from the current position. A
long variable holds four bytes and its value ranges
from -2,147,483,648 to 2,147,483,647.

 ReadBLong(findex,var)

WriteBLong C Writes a long integer to the current position of the
specified binary file.

 WriteBLong(findex,value)

ReadBDouble C Reads a double floating point value from the current
position. A double variable holds eight bytes and its
value ranges from about 2.2251 e-308 to 1.7977
e+308.

 ReadBDouble(findex,var)

WriteBDouble C Writes a double floating point value to the current
position of the specified binary file.

 WriteBDouble(findex,value)

ReadBPString Reads a Pascal string of text from the current
position. Pascal strings can hold up to 255
characters.

 ReadBPString(findex,var)

WriteBPString Writes a string of text having up to 255 characters
to the current position of the specified binary file. If
the string is longer than 255 characters then it will
be truncated.

 WriteBPString(findex,value)

FileBSetEndian C Sets the endian value for the specified binary file. If
set to 1 then the byte order is low byte, high byte.
For Macintosh platform it is generally set to 0 and

for the Windows platform to 1. This is important
when reading in Short and Long values.

 FileBEndianSet(findex,1)

FileBEndianFN F Returns the endian setting for the specified binary
file.

 Put FileBEndianFN(findex) into field 1

Binary Example

These show how to write and read to/from binary files. No checking for the file’s
existence or type is made using the file handle or returned details.

If a file handle is zero then the file does not exist and any attempt to access its
properties will cause a runtime error.

@ Write to a named file
Local fname,fvar,fdets,ftypes,fpaths,fnames,fextens
Local findex,n
FileGet(fname,fvar,fdets,ftypes,fpaths,fnames,fextens)
CreateBFile(fvar,findex,n)
WriteBVariable(findex,'hello')
For n=1 to 10
 WriteBByte(findex,n)
EndFor
CloseBFile(findex)

@ Read from a named file, assumes format known
Local fname,fvar,fdets,ftypes,fpaths,fnames,fextens
Local findex,n
FileGet(fname,fvar,fdets,ftypes,fpaths,fnames,fextens)
OpenAsBFile(fvar,findex)
ReadBVariable(findex,mess)
For n=1 to 10
 ReadBByte(findex,num)
 Put num After mess
EndFor
CloseBFile(findex)

Text Files

As variables in HyperNext are based on strings a set of text file commands are
needed for saving and loading them.

In order to identify each file for reading and writing, a file variable is created
specifically for that file. This file variable is used to indicate which file the read or
write operation should be directed to.

There are three sets of related file commands which treat the filename or path as
either local, absolute or pertaining to files in the ‘Data:Text’ folder.

Name Type Description
CreateTWrite C Creates a text file specified by the folder item handle

and returns a file index which can be used to actually
write to the file.

 CreateTWrite fhandle,findex

OpenTReadAsk

C Displays a dialog box asking the user which text file
to open for reading from.

 OpenTReadAsk(fname,fvar)

OpenTRead

C Opens a text file for reading with the specified name.
The name refers to a file in the ‘Data:Text’ folder.

 OpenTRead(fname,fvar)

OpenTReadLoc C Opens a text file for reading with the specified name.
The pathname refers to a file located in the project’s
folder or subfolder.

 OpenTReadLoc(fname,fvar)

OpenTReadAbs C Opens a text file for reading with the specified
absolute pathname.

 OpenTReadAbs(fname,fvar)

OpenAsTRead Opens an existing text file specified by the folder
item handle and returns a file index which can be
used to read from the file.

 OpenAsTRead fhandle,findex

ReadTLine

C Reads a line of text from the specified file.

 ReadTLine(fvar,value)

CloseTRead

C Closes the specified read file.

 CloseTRead(fvar)

OpenTWriteAsk

C Displays a dialog box asking the user which text file
to open for writing to.

 OpenTWriteAsk(fname,fvar)

OpenTWrite

C Opens a text file for writing with the specified name.
The name refers to a file in the ‘Data:Text’ folder.

 OpenTWrite(fname,fvar)

OpenTWriteLoc C Opens a text file for writing with the specified name.
The pathname refers to a file located in the project’s
folder or subfolder .

 OpenTWriteLoc(fname,fvar)

OpenTWriteAbs C Opens a text file for writing with the specified
absolute pathname.

 OpenTWriteAbs(fname,fvar)

OpenAsTWrite C Opens an existing text file specified by the folder
item index and returns a file index which can be used
to write to the file.

 OpenAsTWrite findex,findex

WriteTLine

C Writes a line of text to the specified file.

 WriteTLine(fvar,value)

CloseTWrite

C Closes the specified write file.

 CloseTWrite(fvar)

EndTFileFN

F Returns true if the specified text file has reached the
end, otherwise returns false.

 Put EndTFileFN(fileid) into filedone

Reading example

@ Read file into field 1

Local fend,fname,h1,sdata
Put 'testdata' into fname
OpenTRead(fname,h1)
Put EndTFileFN(h1) into fend
While fend=0
 ReadTLine(h1,sdata)
 Put sdata After field 1
 Put EndTFileFN(h1) into fend
EndWhile
CloseTRead(h1)

Writing example

@ Write 10 numbers to a file

Local n,fname,h1
Put 'testdata' into fname
OpenTWrite(fname,h1)
For n=1 to 10
 WriteTLine(h1,n)
EndFor
CloseTWrite(h1)

Graphics Files

In conjunction with the image manipulation commands a set of commands for loading
and saving canvases is available.

Files
 There are two variants of these commands that differ only in how the
filename/pathname is interpreted. The filename can refer to either a file within the
projects folder or else an absolute filename.

Scaling
 When loading a canvas from a file, the type of image scaling must be specified. If the
scale is non zero then the image will be scaled to fill the entire canvas otherwise its
size will be unchanged.

Image format
The default formats are Pict and BMP for Macintosh and Windows respectively. A
JPEG save option is also available.

Name Type Description

CanvasSaveAsk

C Display a dialog box asking the user for the name
of the file in which to save the specified canvas.

 CanvasSaveAsk(cid,fname)

SaveAskCanvas C The legacy name for CanvasSaveAsk

 SaveAskCanvas(cid,fname)

CanvasSave

C Save the given canvas to the specified local file.

 CanvasSave(cid,fname)

SaveCanvas C The legacy name for CanvasSave

 SaveCanvas(cid,fname)

CanvasSaveAbs C Save the given canvas to the specified absolute
file.

 CanvasSaveAbs(cid,fname)

CanvasLoadAsk

C Display a dialog box asking the user which file to
load into the specified canvas.

 CanvasLoadAsk(cid,fname,scale)

LoadAskCanvas C The legacy name for CanvasLoadAsk.

 LoadAskCanvas(cid,fname,scale)

CanvasLoad

C Load the given local file into the specified canvas.

 CanvasLoad(cid,fname,scale)

LoadCanvas C The legacy name for CanvasLoad

 LoadCanvas(cid,fname,scale)

CanvasLoadAbs C Load the given absolute file into the specified
canvas.

 CanvasLoadAbs(cid,fname,scale)

CanvasJPEGSave C Save the given canvas to the specified local file in
JPEG format. The quality can range from about 25
to 100 percent.

 CanvasJPEGSave(cid,fname,quality)

 @ Save 80 percent
 CanvasJPEGSave(1,fname,80)

CanvasJPEGSaveAbs C Save the given canvas to the specified absolute file
in JPEG format.

 CanvasJPEGSaveAbs(cid,fname,quality)

CanvasJPEGSaveAsk C Display a dialog box asking the user for the name
of the file in which to save the specified canvas in
JPEG format.

 CanvasJPEGSaveAsk(cid,fname)

16 Networks

Easy Networks

The HyperNext language has built-in network handling called Easy Networks for
communicating across a network with other HyperNext stacks, applications and
REALbasic applications. Easy networks is aimed at beginners and those wanting to
implement some easy to set up communications. However, a conventional and more
powerful network based on TCP/IP is under development for HyperNext.

 Easy Networks has its own simple protocol where every message is prefixed by an
integer header command that can be chosen by the software designer. For example,
a simple message might be

 25,loginid

In order to makes communications more secure HyperNext has no predefined
message header commands and leaves it up to the designer to choose the command
integers and any corresponding messages. Header commands can range from zero up
to over 1000 million and the message body itself can be encrypted as needed.

Easy Network Sockets

Easy networks is based around conventional TCP/IP sockets and allows many sockets
to be created and active at any one time although in practice this will be limited by
the speed at which the HyperNext runtime engine can process events as all network
events are placed on the internal interrupt queue which is still quite slow.

Plug-ins

Easy network can be used from within plug-ins so allowing network extensions to be
built for HyperNext Creator.

Network Events

When certain network events occur they automatically trigger script handlers that
can be defined at design time from the Easy Network menu items located in the Edit
menu.

The socket related to the event can be found from the EasyIndexFN function.

Connected Event

This event handler is called when an Easy socket makes a connection.

Example

 Local mess
 Put ‘Connection by socket ‘ into mess
 Append EasyIndexFN onto mess
 Message mess

Error Event

This event handler is called when an Easy socket error occurs. Note, when a socket is
disconnected error number 102 is automatically generated to indicate that the
socket was disconnected.

Example

 Local socknum,err,mess
 Put EasyIndexFN into socknum
 Put EasyErrorFN(socknum) into err
 If err=102 Then
 Message ‘disconnectd’
 Else
 Put ‘Socket error occurred ’ into mess
 Append err onto mess
 Message mess
 EndIf

Received Event

This event called is called when a message has successfully been received.

Example

 Local snum,cmd,sdata
 Put EasyIndexFN into snum
 Put EasyRxCommandFN(snum) into cmd
 Put EasyRxDataFN(snum) into sdata
 If cmd=1 Then
 Put sdata into field 1
 Else
 If cmd=2 Then
 Put sdata into field 2
 Else
 Message ‘Unknown command’
 EndIf
 EndIf

 Send Completed Event

This event called is called when a message has been sent.

Example

 Local mess
 Put ‘Message sent by socket ‘ into mess
 Append EasyIndexFN onto mess
 Message mess

Send Progress Event

This event handler is called when progress has been made in sending a message. The
number of bytes sent and remaining can then be accessed using the
EasyBytesSentFN and EasyBytesLeftFN functions.

Example

 Put EasyIndexFN into socknum
 Put EasyBytesSentFN(socknum) into field 3
 Put EasyBytesLeftFN(socknum) into field 4

Name Type Description

NetworkRefresh C Rescans the computer’s network hardware and

refreshes the status functions.

 NetworkRefresh

NetCardCountFN F Returns the number of network cards.

 Put NetCardCountFN into numcards

NetIPListFN F Returns a list containing the input address for each
network card.

 Put NetIPListFN into addresses

NetMacListFN F Returns a list of Mac addresses for the user’s
computer.

 Put NetMacListFN into macaddresses

NetSubnetListFN F Returns a list of subnet masks for the user’s
computer.

 Put NetSubnetListFN into subnets

EasyIndexFN

F Returns the number of the socket that triggered the
event.

 EasyIndexFN

Example (in Received event handler)

 Put EasyIndexFN into socknum
 Put EasyRxDataFN(socknum) into field 3

EasyCountFN

F Returns the number of Easy sockets currently in
existence.

 EasyCountFN

Example

 Put EasyCountFN into numsockets

EasyCreateFN

F Creates a new Easy socket and returns the
corresponding socket number.

 EasyCreateFN

Example

 Put EasyCreateFN into snum
 If snum>0 Then
 EasyConnect snum,addr,port,ti
 EndIf

EasyListen

C Sets the specified Easy socket into listening mode on
the given port. In order to make a network
connection between two applications, one of them
must be listening.

 EasyListen socket,port

EasyConnect

C Attempts to make a connection via the specified Easy
socket to the target address. The address can be
specified by the IP number such as 123.171.32.84 or
if the target is on the local host by specifying
localhost. The timeout parameter is currently is not
used.

 EasyConnect socket,address,port,timeout

Example

 Put ‘123.171.32.84’ into addr
 EasyConnect 5,addr,4000,0
 Put ‘localhost’ into addr
 EasyConnect 5,addr,4000,0

EasySendMessage

C Sends a message using the specified Easy socket. The
message comprises a command header which is
simply an integer plus the actual data.

 EasySendMessage socket,command,data

Example, target understands command 23.

 Global eSockNum
 Local cmd,sdata
 Put 23 into cmd
 Put field 5 into sdata
 EasySendMessage eSockNum,cmd,sdata

EasyDisconnect

C Disconnects the specified Easy socket. When the
socket is actually disconnected then the sockets
Disconnect event handler will be triggered.

 EasyDisconnect socket

EasyDelete

C Deletes the specified Easy socket. If the specified is
the last in the socket list then it is deleted and the
list count is decremented by one but otherwise the
socket is simply disconnected.

 EasyDelete socketnum

EasyConnectedFN

F Returns the connection status for the specified Easy
socket.

States
 0 - disconnected
 1 - trying to connect
 2 - connected

 Put EasyConnectedFN(socketnum) into cstate

EasyAddressFN F Returns the IP address of the remote machine for the
specified Easy Socket.

Put EasyAddressFN(socketnum) into remoteIP

EasyErrorFN

F Returns the error status for the specified Easy
socket. Usually this is used from within the Easy
Network Error Event handler.

 Put EasyErrorFN(socketnum) into err

Error codes
 0 - no error
 100 - OpenDriver Error.

 102 - Lost connection (also occurs during
disconnect).
 103 - Name resolution error.
 105 - Address in use error.
 106 - Invalid state error.
 107 - Invalid port error.
 108 - Out of memory error.

EasyRxStateFN

F Returns the reception state for the specified Easy
socket.

States
 0 - idle
 1 - receiving
 2 - data ready

 Put EasyRxStateFN(socketnum) into rxstate

EasyRxCommandFN

F Returns the command portion of the received
message.

 Put EasyRxCommandFN(socketnum) into scmd

EasyRxDataFN

F Returns the data portion of the received message.

 Put EasyRxDataFN(socketnum) into sdata

EasyTxStateFN

F Returns the transmission state for the specified Easy
socket.

 0 - idle
 1 - sending
 2 - aborted
 3 - completed

 Put EasyTxStateFN(socketnum) into txstate

EasyTxBytesSentFN

F Returns the number of bytes sent of the current
message. The value is only accurate when used within
the Send Progress event handler.

 Put EasyTxBytesSentFN(socketnum) into numsent

EasyTxBytesLeftFN

F Returns the number of bytes remaining to be sent for
the current message. The value is only accurate when
used within the Send Progress event handler.

 Put EasyTxBytesLeftFN(socketnum) into numleft

URLexistsFN F Returns true if the given web page exists otherwise
false. The filename specifies a local address. The yield

flag when true allows background events such as
progress bars and timers to work while setting yield
to false freezes most background activity. The
timeout value cause the URLexistsFN function to
abort if success has not occured within that time.

 Put URLexistsFN(addr,yield,timeout,fname) into
okay

 example
 addr = http://www.tigabyte.com/exists.txt
 yield - true / false
 timeout - time in seconds
 fname - file in which to save the download.

URLexistsAbsFN F The same as URLexistsFN except the filename
specifies an absolute address.

HTTPSetHeaderName C This sets the HTTP header name to be passed to the
web server via the URLexistsFN or URLexistsAbsFN
functions.

 HTTPSetHeaderName(name)

 HTTPSetHeaderName('User-Agent')

HTTPSetHeaderValue C This sets the HTTP header value to be passed to the
web server via the URLexistsFN or URLexistsAbsFN
functions.

 HTTPSetHeaderValue(value)

 HTTPSetHeaderValue('My Easy Web Browser')

HTTP Example

This example finds your IP address using the website 'www.whatismyip.org'. If
successful it puts the IP address number into field 1.

 Local webaddr,yield,timeout,filename,okay

 @ Set params for URLexists function
 HTTPSetHeaderName('User-Agent')
 HTTPSetHeaderValue('My Web Browser')
 Put 'http://www.whatismyip.org/' into webaddr
 Put 1 into yield
 Put 30 into timeout
 Put 'webtext.txt' into filename

 Put URLexistsFN(webaddr,yield,timeout,filename) into okay

 @ If okay then write IP to field 1
 If okay=1 Then
 Local h1,sdata
 OpenTReadLoc(filename,h1)
 ReadTLine(h1,sdata)
 Put sdata After field 1
 CloseTRead(h1)
 Else
 Put 'unsuccessful' into field 1
 EndIf

Web Server

By using just a few commands HyperNext can provide a very basic web server
capability which allows a HyperNext application, stack or a project running within the
Creator/Developer to serve web pages. These pages can be text graphics or
multimedia as requested by a web browser.

 Note, the server speed is very low and does not support multiple connections, so
serving only one page at a time. Furthermore, the present configuration does not
support logging accesses etc .

 The usual port for serving web pages is port 80 but this can be changed when
starting up the server.

 The default directory is the project/stack/application folder and the web pages and
web directories must reside here.

Name Type Description

WebServerStart

C Sets up and starts the web server to listen on
the specified port.

 WebServerStart port

WebServerStop

C Stops the webserver.

 WebServerStop

WebServerPortFN

F Returns the port number which the server is
using.

 Put WebServerPortFN into portnum

WebServerAddressFN

F Returns the full address including the port
number as in 80.229.165.175:80

 Put WebServerAddressFN into fulladdress

WebServerIPFN

F Returns the address without port number as in
80.229.165.175

 Put WebServerIPFN into ipnumber

17 RBscript

Introduction
HyperNext Creator, Developer and Player are all written in REALbasic and therefore
allow the programmer to access to RBscript, a typed object orientated language
similar to modern BASICs.

RBscript runs much faster than the native HyperNext language and so is highly useful
where speed is important. Although HyperNext is more than fast enough for many
operations, certain complex operations such as neural networks, graphics, image or
heavy text processing require the speed of Rbscript.

Example 1

This example uses the PUT command to place the RBscript source code into the
source valuable. The following code sets the context of RBscript to canvas 1 and
draws 10000 points.

Local src
RBsSetCanvas 1
Put 'Dim n,x,y as integer' into src
Put 'Dim clr as color' after src
Put 'for n=1 to 10000' after src
Put 'clr=RGB(Rnd*255,Rnd*255,Rnd*255)' after src
Put 'SetForeColor(clr)' after src
Put 'x=Rnd*300' after src
Put 'y=rnd*300' after src
Put 'PlotPoint x,y' after src
Put 'next' after src
RBsSetSource src
RBsTest
RBsRun

Example 2

This example uses the RBsAdd command to place the RBscript source code into the
source variable. The RBscript code draws 10000 points.
This method is easier to use as the RBscript system itself keeps track of the RBscript
source code.

Local src
RBsSetCanvas 1
RBsClear

RBsAdd 'Dim n,x,y as integer'
RBsAdd 'Dim clr as color'
RBsAdd 'for n=1 to 10000'
RBsAdd 'clr=RGB(Rnd*255,Rnd*255,Rnd*255)'
RBsAdd 'SetForeColor(clr)'
RBsAdd 'x=Rnd*300'
RBsAdd 'y=rnd*300'
RBsAdd 'PlotPoint x,y'
RBsAdd 'next'
RBsTest
RBsRun

Name Type Description

RBsSetSource

C Sets the source or code to be used by the
RBscript engine.

 RBsSetSource src

RBsSourceFN F Returns the current source code.

 Put RbsSourceFN into src

RBsClear C Clears the source code from the Rbscript internal
source text.

 RbsClear

RBsAdd C Adds the specified text to the Rbscript internal
source text.

 RbsAdd ‘Dim x,y as Integer’

RBsTest

C The RBscript engine tests the source code to see
if it has any errors. Afterwards RBsTestErrorFN
can be used to see if the test was successful or
not.

 RBsTest

RBsRun

C Executes the given source code.

 RBsRun

RBsInput

C Accepts input from the keyboard or other
specified source.

RBsSetEncoding

C Sets the text encoding to be used.

RBsSetCanvas

C Specifies the canvas to be used by RBscript.

 RBsSetCanvas cid

RBsStateFN

F Returns the state of the RBscript engine, whether
it is running etc.

 0 - Ready
 1 - Running
 2 - Complete
 3 - Aborted

 Put RBsStateFN into res

RBsTestErrorFN

F Returns a value specifying whether an error
occurred during the testing of the source code. A
value of zero means no error occurred other the
value represents the line number in the source
where the error occurred.

 Put RbsTestErrorFN into res

RBsTestErrorNumFN F Returns the error number from the Rbscript
compiler.

 Put RbsTestErrorNumFN into errnum

RBsTestErrorMsgFN F Returns the error message from the Rbscript
compiler.

 Put RbsTestErrorMsgFN into errmess

RBsTestSrcLineFN F Returns the source line where the error occured.

 Put RbsTestSrcLineFN into src

RBsRunErrorFN

F Returns a value specifying whether an error
occurred during the execution of the source
code. A value of zero means no error occurred

 Put RBsRunErrorFN into res

RBsRunErrorNumFN F Returns the error number from the aborted
Rbscript run.

 Put RbsRunErrorNumFN into errnum

RBsRunErrorMsgF F Returns the error message from the aborted
Rbscript run.

 Put RbsRunErrorMsgFN into errmess

RBsRunSrcLineFN F Returns the source line where the error occurred

during the aborted Rbscript run.

 Put RbsRunSrcLineFN into src

RBsOutputFN

F Returns text output from the running RBscript.

 Put RBsOutputFN into field 1

RBscript Graphics

A current limitation of RBscript is that it can work only with one canvas at a time.
The canvas is passed to it using the RBsSetCanvas command as detailed above.

 Once the RBscript has been assigned a canvas then the commands listed here can be
used within RBscript and a predefined set of variables can be used to allow
interaction with the RBscript.

Name Type Description

ClearRect

C Clears an area of the canvas to the colour of the
parent window background..

 ClearRect(x,y,width,height)

DrawCautionIcon

C Draws the caution icon at the specified coordinates.

 DrawCautionIcon(x,y)

DrawLine

C Draws a line from x1,y1 to x2,y2 in the current colour.

 DrawLine(x1,y1,x2,y2)

DrawNoteIcon

C Draws the note icon at the specified coordinates.

 DrawNoteIcon(x,y)

DrawOval

C Draws the outline of an oval in the current colour.

 DrawOval(x,y,width,height)

DrawRect

C Draws the outline of a rectangle in the current colour.

 DrawRect(x,y,width,height)

DrawRoundRect

C Draws the outline of a rounded rectangle in the
current colour.

 DrawRoundRect(x,y,width,height,ovalwidth)

DrawStopIcon

C Draws the stop icon at the specified coordinates.

 DrawStopIcon(x,y)

DrawString

C Draws the text at the specified coordinates.

 DrawString(string,x,y)

DrawStringWrap

C Draws the text at the specified coordinates using wrap
defined by the wrap width.

 DrawStringWrap(string,x,y,wrapwidth)

FillOval

C Draws an oval filled with the current colour.

 FillOval(x,y,width,height)

FillRect

C Draws a rectangle filled with the current colour.

 FillRect(x,y,width,height)

FillRoundRect

C Draws a rounded rectangle filled with the current
colour.

 FillRoundRect(x,y,width,height,ovalwidth)

GetHeightFN

F Returns the height of the canvas.

 Put GetHeightFN into hgt

GetPixelFN

F Returns the colour of the specified pixel.

 Put GetPixelFN(x,y) into colr

GetTextFontFN

F Returns the name of the font being used.

 Put GetFontFN into fname

GetPixelFN

F Returns the colour of the specified pixel.

 Put GetPixelFN(x,y) into colr

GetTextSizeFN

F Returns the size of the text.

 Put GetTextSizeFN(x,y) into tsize

GetWidthFN

F Returns the width of the canvas.

 Put GetWidthFN into hgt

PlotPoint

C Plots a point at the specified coordinates in the
current colour.

 PlotPoint(x,y)

RefreshCanvas C Forces OS X to refresh the screen. On Macintosh OS 9

and Windows it has no effect.

 RefreshCanvas

RndDbFN

F Returns a random double value in the range

 0 <= r < 1

 Put RndDbFN into field 2

RndRangeFN

F Returns a random integer in the range

 min <= r <= max

 Put RndRangeFN(-13,123) into field 2

SeedFN

F Returns the value of the seed for the random number
generator.
When RBscript first runs the seed and random number
generator are unset.

 Put SeedFN into field 2

SetBold

C Sets the text bold mode either on or off.

 SetBold(boolean)

SetForeColor

C Sets the forecolour.

 SetForeColor(colr)

SetItalic

C Sets the text italic mode either on or off.

 SetItalic(boolean)

SetOldRenderer

C Sets the graphic rendering mode to either old(Classic)
or new(Quartz) as on OS X. Using the old render on OS
X is much faster. This has no effect on Mac Classic or
Windows.

 SetOldRenderer(boolean)

SetPenHeight

C Sets the height of the pen.

 SetPenHeight(psize)

SetPenWidth

C Sets the width of the pen.

 SetPenWidth(psize)

SetPixel C Sets the colour of the specified pixel

 SetPixel(x,y,colr)

SetSeed

C Seeds the random number generator using the
specified integer value. If the value is 0 then the
random number generator is seeded with the current
time.

 SetSeed(2561)

SetTextFont

C Sets the text font.

 SetTextFont(fname)

SetTextSize

C Sets the size of the text.

 SetTextSize(tsize)

SetUnderline

C Sets the text underline mode either on or off.

 SetUnderline(boolean)

StringHeightFN

F Returns the height of the specified text using the
wrap value in pixels.

 Put StringHeightFN(string,wrapval) into hgt

StringWidth

C Returns the width of the specified text.

 Put StringWidthFN(string) into width

Neural Network Interface

Procedures & Functions

These procedures and functions provide a way of passing information to and from an
RBscript. They are very general in nature and are intended to be wrapped in
developer plug-in defined procedure and functions.

Most neural network systems need input, output, training and testing parameters.
They also store their weights, log intermediate training results and final results.

This interface provides a way of encapsulating functionality and data, so making it
easier to develop neural networks, both from within plug-ins and from within
HyperNext Creator using HyperNext script.

Name Type Description

RBsSetGraphSpec C Sets the graph or chart specification variable for

the specified canvas using the given text.

 RbsSetGraphSpec(canvasid,txt)

 String variable - gbGraphSpec

RBsSetNeuralSpec C Sets the neural network specification variable for
the specified canvas using the given text.

 RbsSetNeuralSpec(canvasid,txt)

 String variable - gbNeuralSpec

RBsSetTrainSpec

C Sets the training specification variable for the
specified canvas using the given text.

 RbsSetTrainSpec(canvasid,txt)

 String variable - gbTrainSpec

RBsSetQuerySpec

C Sets the query specification variable for the
specified canvas using the given text.

 RbsSetQuerySpec(canvasid,txt)

 String variable - gbQuerySpec

RBsSetLearnSpec C Sets the learning specification variable for the

 specified canvas using the given text.

 RbsSetLearnSpec(canvasid,txt)

 String variable - gbLearnSpec

RBsSetTrainingData C Sets the training data variable for the specified
canvas using the given text.

 RbsSetTrainingData(canvasid,txt)

 String variable – gbTrainingData

RBsSetValidationData C Sets the validation data variable for the
specified canvas using the given text.

 RbsSetValidationData(canvasid,txt)

 String variable – gbValidationData

RBsSetAnalysisData C Sets the analysis data variable for the specified
canvas using the given text.

 RbsSetAnalysisData(canvasid,txt)

 String variable – gbAnalysisData

RBsSetWeights C Sets the weights data variable for the specified
canvas using the given text.

 RbsSetTrainingWeights(canvasid,txt)

 String variable – gbWeights

RBsSetCommand

C Sets the command variable for the specified
canvas using the given text.

 RbsSetCommand(canvasid,txt)

 String variable – gbCommand

RBsWeightsFN F Returns the weights data for the specified
canvas .

 Put RbsWeightsFN(canvasid) into wstate

 String variable – gbWeights

RBsResultsFN F Returns the results data for the specified canvas
.

 Put RbsResultsFN(canvasid) into results

 String variable – gbResults

RBsLogFN F Returns the log data for the specified canvas .

 Put RbsLogFN(canvasid) into runlog

 String variable – gbLog

Variables

These variables are only directly accessible from within an Rbscript. From HyperNext
they can only be set or interrogated using one of the procedures and functions listed
above.

Name Rbscript
Data Type

Description

gbAnalysisData string Holds the analysis data.

gbCommand string Holds the command data.

gbEscape

boolean Set to true when the Escape key has been
pressed AND gbYield is set to true, otherwise it
remains unchanged.

gbGraphSpec

string Holds the graph specification.

gbLearnSpec

string Holds the learning specification.

gbLog string Holds the log data resulting from a run.

gbNeuralSpec string Holds the neural network specification.

gbQuerySpec string Holds the query specification.

gbResults string Holds the results output by the neural network.

gbState

string Holds the general state.

gbTrain string Holds the train command.

gbTrainingData string Holds the training data.

gbTrainSpec string Holds the training specification.

gbValidationData string Holds the validation data.

gbWeights string Holds the neural network weights.

gbYield boolean When set to true allows the Escape key to be
checked.

18 Image Banks

HyperNext has a set of image banks allowing images to be stored, retrieved and
loaded/saved to and from files. The images can also be used in sprite animations and
copied to/from canvases. Each bank holds one image and the number of banks
allowed is dicated by the memory available.

Files used by image banks can be either local or absolute. Usually it is best to use
local files.

There are also two sets of commands for saving/loading images. One is for cross-
platform use and the other for standard image formats such as jpegs, picts etc.

Commands & Functions

Name Type Description

ImageBankReset C Resets the number of image banks to zero and

clears all images.

 ImageBankReset

ImageBankReserve C Reserves a specified number of image banks in
advance.

 ImageBankReserve(10)

ImageBankCountFN F Returns the number of currently allocated image
banks.

 Put ImageBankCount FN into npics

ImageCanvasToBank C Copies the specified canvas to the specified
image bank. When the scale value is nonzero
then the image will be scaled to
fit the image bank otherwise its size will remain
unchanged.

 ImageCanvasToBank(cid,bid,scale)

 ImageCanvasToBank(5,2,1)

ImageCanvasToBankArea C Copies an area of the specified canvas to an area
of the specified image bank.

ImageCanvasToBankArea(cid,bid,x1s,y1s,ws,hs,x
1d,y1d,wd,hd)

 where
 cid - canvas number
 bid - image bank number
 x1s - source x coord
 y1s - source y coord
 ws - source width
 hs - source height
 x1d - destination x coord
 y1d - destination y coord
 wd - destination width
 hd - destination height

ImageCanvasToBankArea(5,2,10,10,50,50,90,90
,50,50)

ImageBankToCanvas C Copies the specified image bank to the specified
canvas. When the scale value is nonzero then the
image will be scaled to
fit the canvas otherwise its size will remain
unchanged.

 ImageBankToCanvas(bid,cid,scale)

 ImageBankToCanvas(2,5,1)

ImageBankToCanvasArea C Copies an area of the specified image bank to an
area of the specified canvas.

ImageBankToCanvasArea(bid,cid,x1s,y1s,ws,hs,x
1d,y1d,wd,hd)

ImageBankToCanvasArea(2,5,10,10,50,50,90,90
,50,50)

ImageBankLoad C Loads an image from the specifed local file into
an image bank. When the scale value is nonzero
then the image will be scaled to fit the bank
otherwise its size will remain unchanged.

 ImageBankLoad(bid,fname,scale)

 ImageBankLoad(1,filename,0)

ImageBankLoadAbs Loads an image from the specifed absolute file

into an image bank. When the scale value is
nonzero then the image will be scaled to fit the
bank otherwise its size will remain unchanged.

 ImageBankLoadAbs(bid,fname,scale)

ImageBankLoadAsk C Loads an image using the file-open dialog box
into an image bank. When the scale value is
nonzero then the image will be scaled to fit the
bank otherwise its size will remain unchanged.

 ImageBankLoadAsk(bid,scale)

 ImageBankLoadAsk(1,0)

ImageBankSave C Saves an image from an image bank to the
specifed local file.

 ImageBankSave(bid,fname)

 ImageBankSave(1,filename)

ImageBankSaveAbs C Saves an image from an image bank to the
specifed absolute file.

 ImageBankSaveAbs(bid,fname)

 ImageBankSaveAbs(1,filename)

ImageBankSaveAsk C Saves an image from an image bank to the file
selected using the file dialog box.

 ImageBankSaveAsk(bid)

 ImageBankSaveAsk(1)

ImageBankLoadXP C Loads an image from the specifed local file into
an image bank. When the scale value is nonzero
then the image will be scaled to fit the bank
otherwise its size will remain unchanged. The
image must be in the HyperNext cross-platform
format.

 ImageBankLoadXP(bid,fname,scale)

 ImageBankLoadXP(1,filename,0)

ImageBankLoadXPAbs C Loads an image from the specifed absolute file
into an image bank. When the scale value is
nonzero then the image will be scaled to fit the
bank otherwise its size will remain unchanged.
The image must be in the HyperNext cross-

platform format.

 ImageBankLoadXPAbs(bid,fname,scale)

 ImageBankLoadXPAbs(1,filename,0)

ImageBankLoadXPAsk C Loads an image using the file-open dialog box
into an image bank. When the scale value is
nonzero then the image will be scaled to fit the
bank otherwise its size will remain unchanged.
The image must be in the HyperNext cross-
platform format.

 ImageBankLoadXPAsk(bid,scale)

 ImageBankLoadXPAsk(1,0)

ImageBankSaveXP C Saves an image from an image bank to the
specifed local file using the HyperNext cross-
platform format.

 ImageBankSaveXP(bid,fname)

 ImageBankSaveXP(1,filename)

ImageBankSaveXPAbs C Saves an image from an image bank to the
specified absolute file using the HyperNext cross-
platform format.

 ImageBankSaveXPAbs(bid,fname)

ImageBankSaveXPAsk C Saves an image from an image bank to the file
selected using the file dialog box. The image is in
the HyperNext cross-platform format.

 ImageBankSaveXPAsk(bid)

 ImageBankSaveXPAsk(1)

ImageBankValidFN F Returns the value 1 if the specified image bank
holds an image.

 Put ImageBankValidFN(bid) into okay

ImageBankSetSizeFN F Returns 1 if the specified image bank was
successfully set to the given size.

 ImageBankSetSizeFN(bid,width,height)

 Put ImageBankSetSize(bid,800,600) into okay

ImageBankWidthFN F Returns the width of the specified image bank.

 Put ImageBankWidthFN(bid) into width

ImageBankHeightFN F Returns the height of the specified image bank.

 Put ImageBankHeightFN(bid) into height

ImageBankFileNameFN F Returns the filename of the file last accessed
using any of the image bank file commands.

 Put ImageBankFileNameFN into fname

ImageBankPathNameFN F Returns the pathname of the file last accessed
using any of the image bank file commands.

 Put ImageBankPathNameFN into fname

ImageBankRotateLeft C Looked at from the top of the image, the whole
image is rotated left by 90 degrees. The image
will be resized to match the rotation.

 ImageBankRotateLeft(bid)

ImageBankRotateRight C Looked at from the top of the image, the whole
image is rotated right by 90 degrees. The image
will be resized to match the rotation.

 ImageBankRotateRight(bid)

ImageBankRotateDown C The whole image is rotated left by 180 degrees.

 ImageBankRotateDown(bid)

ImageBankFlipH C Flips the image horizontally.

 ImageBankFlipH(bid)

ImageBankFlipV C Flips the image vertically.

 ImageBankFlipV(bid)

ImageBankStringFN F This functions takes the specified image bank
and returns it in string or text form. It is useful
when an image needs to be sent across a
network or when a set of images needs to be
stored in one file.

 Put ImageBankStringFN(bid) into var

 @ Store image bank 5 in variable idata
 Put ImageBankStringFN(5) into idata

ImageBankFromString C This takes a string and converts it into an image
placing it in the specified image bank.

 ImageBankFromString(bid,var)

 @ Restore image bank 2 from string svar
 ImageBankFromString(2,svar)

ImageBankClear C Clears the image from the specifed image bank
so freeing up memory. This also sets the image
bank status to invalid.

 ImageBankClear(bid)

19 Sprite Animation

HyperNext programs can have one animation area where sprite objects can be
placed, animated and moved. The drawing of sprite objects within the animation area
is controlled automatically by the animation area itself. An animation area can also
have a backdrop image attached.

 A user simply creates a sprite, attaches it to the animation surface and then
controls the sprite coordinates. Smooth movement can be achieved as the animation
surface itself handles redrawing, collision detection and sprite priorities.

Commands & Functions

Name Type Description

AnimationSetDepth C Sets the color depth of the animation area. Valid

values are 0, 8, 16 or 32. If 0 is selected then
the animation area automatically sets its color
depth to match that of the screen depth.

 AnimationSetDepth(32)

AnimationShow C Makes the animation area visible on the card or
window.

 AnimationShow

AnimationHide C Hides the animation area on the card or window.

 AnimationHide

AnimationEnable C Enables the animation area so that sprites and
other animation can take place.

 AnimationEnable

AnimationDisable C Disables the animation area so that sprite
movement and other animation cannot occur.

 AnimationDisable

AnimationSetCoords C Sets the x and y coordinates of the animation
area.

 AnimationSetCoords(x,y)

AnimationSetSize C Sets the width and height of the animation area.

 AnimationSetSize(width,height)

AnimationSetPeriod C Sets how often in milliseconds the animation area
will be updated.

 AnimationSetPeriod(period)

AnimationClear C Clears the animation area removing all sprites but
leaving the backdrop image showing.

 AnimationClear

AnimationBackdrop C Sets the specified bank image as the backdrop
for the animation.

 AnimationBackdrop(bid)

AnimationRun C Starts the animation running continuously.

 AnimationRun

AnimationRunOnce C Runs the animation just once.

 AnimationRunOnce

AnimationUpdate C Cause the animation to update now and does not
wait for the animation timer.

 AnimationUpdate

AnimationStop C Stops or pauses the animation.

 AnimationStop

AnimationDepthFN F Returns the current color depth setting of the
animation.

 Put AnimationDepthFN into depth

AnimationLeftFN F Returns the left hand side or x coordinate of the
animation area.
 Put AnimationLeftFN into x

AnimationTopFN F Returns the top side or y coordinate of the
animation area.
 Put AnimationTopFN into y

AnimationWidthFN F Returns the width of the animation area.
 Put AnimationWidthFN into width

AnimationHeightFN F Returns the height of the animation area.

 Put AnimationHeightFN into height

AnimationMouseFN F Returns a list comprising which sprite objects
were under the mouse pointer when it was
clicked.
 Put AnimationMouseFN into slist

20 Sprite Objects

Sprites are objects comprising an image and other attributes such as coordinates,
size and direction that can be automatically moved around by the animation area.

Commands & Functions

Name Type Description

SpriteCreateFN F Creates one sprite and automatically attaches it to

the animation area. If the sprite was successfully
created it will return the sprite identity otherwise
it will return zero.

SpriteCreateFN(bimage,x,y,priority,group,direct)

 Put SpriteCreateFN(1,50,59,1,1,1) into sid

 where
 bimage - the bank holding the required image.
 x - the x coordinate where the sprite will be
 placed.
 y - the y coordinate where the sprite will be
 placed.
 priority - the order in which sprites are
 refreshed.
 group - the group which the sprite belongs to
 as used by the collisiion handler.
 if negative - the sprite can collide
with
 any other sprite except those in
 group 0.
 if positive - the sprite can collide with
 any other sprite except those in
 group 0 and its own group.
 direct - a value defined by the user indicating
 the sprites movement direction
 usually 8 directions are used as in
 main compass points.

SpriteReCreateFN F Similar to the SpriteCreateFN function except it
updates the properties of the given sprite.
This can be used to animate a sprite with different
images.

 SpriteReCreateFN(sid,bid,x,y,priority,group,dir)

 Put SpriteReCreateFN(1,1,50,59,1,1,1) into sid

SpriteClose C Detaches the sprite from the animation area.

 SpriteClose(sid)

SpriteStateFN F Returns the state of the specified sprite.

Values can be
 0 - the sprite does not exist
 1 - the sprites exists and is active
 (attached)
 2 - the sprite exista and is inactive
 (unattached)

 Put SpriteStateFN(sid) into state

SpriteSetCoords C Sets the coordinates of the specified sprite.

 SpriteSetCoords(sid,x,y)

SpriteSetPriority C Sets the priority of the specified sprite.

 SpriteSetPriority(sid,priority)

SpriteSetGroup C Sets the group of the specified sprite.

 SpriteSetGroup(sid,group)

SpriteSetDirection C Sets the direction of the specified sprite.

 SpriteSetDirection(sid,direct)

SpriteCountFN F Returns the number of existing sprites.

 Put SpriteCountFN into nsprites

SpriteFetchBank C Assigns the specified bank image to the sprite.

 SpriteFetchBank(sid,bid)

SpriteXFN F Returns the x coordinate of the specified sprite.

 Put SpriteXFN(sid) into x

SpriteYFN F Returns the y coordinate of the specified sprite.

 Put SpriteYFN(sid) into y

SpriteWidthFN F Returns the width of the specified sprite.

 Put SpriteWidthFN(sid) into width

SpriteHeightFN F Returns the height of the specified sprite.

 Put SpriteHeightFN(sid) into height

SpritePriorityFN F Returns the priority of the specified sprite.

 Put SpritePriorityFN(sid) into priority

SpriteGroupFN F Returns the group of the specified sprite.

 Put SpriteGroupFN(sid) into group

SpriteDirectionFN F Returns the direction of the specified sprite.

 Put SpriteDirectionFN(sid) into direct

SpriteCollisionFN F Returns a list of any sprites which have collided. If
the list is empty then no collisions occurred.

 Put SpriteCollisionFN into clist

SpriteMouseHitFN F Returns a list of any sprites under the mouse
pointer when it was clicked. If the list is empty
then sprites were hit.

 Put SpriteMouseHitFN into clist

SpriteKeyTestFN F Returns whether the specified key was pressed or
not. If equal to 1 then the key was pressed else
returns zero.

 Put SpriteKeyTestFN(key) into kval

21 AppleScript

AppleScript is a scripting language that is understood by all modern Macintosh
computers and allows you to control the computer without using the keyboard or
mouse. There are times when HyperNext might not have the required functionality
and perhaps Applescript might provide an alternative solution.

Many applications also understand AppleScript and some can be controlled from your
HyperNext stack or standalone.

At the present time only one AppleScript can be active at any one time. So if you
have several AppleScripts then each must be executed before the others. For
instance

 AScriptExecute(script1)

 AScriptExecute(script2)

NOTE
The commands AScriptCompile and AScriptRun are now obsolete and have been
replaced by the single command AScriptExecute.

Example

 The first text is an AppleScript that tells the Finder(Mac OS) to Beep.

 Tell application “Finder”
 Beep
 End Tell

 Assuming the above AppleScript is in field 1 then the HyperNext code might be

 Local src1, errflag

 Put field 1 into src1

 AScriptExecute(src1)
 Put AScriptErrLastFN into errflag
 If errflag=0 Then
 Put AScriptResultFN into field 2
 Else
 Beep
 EndIf

Name Type Description

AScriptExecute

C This takes an AppleScript, tries to compile it and if
successful then executes it. Any compilation or
runtime error will be flagged and can be checked
using AScriptErrLastFN. The function
AScriptErrWhereFN indicates where any error
occurred, either in the compilation or execution
phase.

 AScriptExecute(src1)

AScriptErrLastFN

F This function can be used to check if there has
been an error during compilation or during
execution of the compiled AppleScript. If it is non
zero than an error occurred.

 Put AScriptLastErrFN into errflag

AScriptErrWhereFN

F Returns where any error occurred. When 1, the
error occurred in the compilation phase, and when
2, in the execution phase. A zero value indicates
that no error occurred.

 Put AScriptErrWhereFN into where

AScriptResultFN

F Returns the result, if any, after running the
AppleScript.

If the result is textual then it will be surrounded by
quotation marks. If numeric, it will just be a text
string.

 Put AScriptResultFN into answer

AScriptErrKnownFN

F Assuming that AScriptErrLastFN gives an error
then this function will return 1 if the error is known
otherwise it returns 0.

 Note, if the return value is 0 there may still be an
error so AScriptErrLastFN should be checked first.

 Put AScriptErrKnownFN into errknown

AScriptErrNumberFN

F The number or code of the error.

 Put AScriptErrNumberFN into errnum

AScriptErrMessageFN

F A description of the error.

 Put AScriptErrMessageFN into errmess

AScriptPropCountFN

F Returns the number of properties in the compiled
AppleScript

 Put AScriptPropCountFN into nvars

AScriptPropNameFN

F Returns the name of the property with the given
index. Indexes range from 1 to the number of
AppleScript properties.

 The following example builds a list of property
names contained in a compiled AppleScript.

 Local cnt, nprops,namelist,n
 put ‘’ into namelist
 put AScriptPropCountFN into cnt
 If cnt>0 Then
 For n=1 To cnt
 Put AScriptPropNameFN(n) after namelist
 EndFor
 EndIf

AScriptPropValueFN

F Returns the value of the property when given a
property name.

 Put AScriptPropValueFN(pname) into answer

AScriptSetPropValue

C This sets the value of the named property.

 AScriptSetPropValue pname,value

22 Apple Events

Apple Events are a way of communicating with the Operating System or other
applications.

A current limitation of HyperNext is that it cannot yet handle the folder items
returned by some Apple Events.

Example - Eudora

The following example checks the In box of the Eudora e-mail application.

Local obj1,obj2,obj3,u,i,res
Put AEGetNamedObjDescFN('euMB',0,'In') into obj1
NewAppleEvent('core','cnte','CSOm')
AESetObjSpecParam('----',obj1)
AESetMacTypeParam('kocl','euMS')
Put AESendFN into res

If res=1 Then
 Put AEReplyIntegerFN into u
 NewAppleEvent('core','getd','CSOm')
 for i=1 to u
 Put AEGetIndexedObjDescFN('euMS',obj1,i) into obj2
 Put AEGetPropertyObjDescFN(obj2,'euSu') into obj3
 AESetObjSpecParam('----',obj3)
 Put AESendFN into res
 If res=1 Then
 Put AEReplyStringFN after field 1
 EndIf
 EndFor
EndIf

Example - String Tx

@ Apple Event Tx 0- sending string

Local obj1,obj2,obj3
Local mess,u,i,res,creatorcode
Put field 1 into mess
Put 'ttxt' into creatorcode
NewAppleEvent('user','user',creatorcode)
AESendString mess
put AESendFN into res
If res=1 Then
 put AEReplyStringFN into field 2
 Beep
EndIf

23 Serial Ports

The following commands and functions allow a HyperNext program to control the
serial ports on Windows, Macintosh OS X and OS 9 platforms. This allows a HyperNext
program to receive data from a wide range of serial devices such as Global
Positioning Systems and laboratory devices like digital multi-meters. It also allows
control of devices such as DC electric motors, stepper motors and any other device
employing an RS-232 serial controller.

The commands have been tested on the Windows platform with both the standard
D9 serial connector and Keyspan USB to serial converter module. They have also
been tested with the Keyspan on both Macintosh OS X and OS 9 platforms.

Each serial port can trigger two types of event, an error event and a data ready
event. When either event is triggered then the Serial handler will be called. The serial
handler script is accessible via the Edit Menu: Serial Ports option. Once triggered, the
associated serial port can be found using the SerialIdentityFN or the SerialErrorFN
functions.

Name Type Description

SerialSetPort C Assigns the numbered physical port to the

specified serial port.

 SerialSetPort(snum,pnum)

SerialSetBaud C Sets the rate at which data will be sent and
received through the specified port. The speed
is measured in baud and a list of possible values
is given below.

 SerialSetBaud(snum,value)

Possible baud rates:-

 300, 600, 1200, 1800, 2400, 3600, 4800,
7200, 9600, 14400, 19200,

 28800, 38400, 57600, 115200, 230400

SerialSetDataBits C Sets the number of data bits to be used by the
specified port. Possible values are 5, 6, 7 or 8
data bits.

 SerialSetDataBits(snum,value)

SerialSetParity C Sets the parity of the specified paort. Possible
values are shown below.

 SerialSetParity(snum,value)

 Possible parity values:-
 0 - No parity
 1 - Odd parity
 2 - Even parity

SerialSetStopBits C Sets the number of stop bits for the specified
port. Possible values are 1, 1.5, and 2 data bits.

 SerialSetStopBits(snum,value)

SerialEnableCTS C Enables or disables CTS flow control for the
specified port. A value of 1 enables and 0
disables it.

 SerialEnableCTS(snum,value)

SerialSetDTR C Sets the state of the Data Terminal Ready line
for the specified port to either 0 or 1.

 SerialSetDTR(snum,value)

SerialEnableDTR C Enables or disables DTR flow control for the
specified port. A value of 1 enables and 0
disables it.

 SerialEnableDTR(snum,value)

SerialSetRTS C Sets the state of the Request To Send line for
the specified port to either 0 or 1.

 SerialSetRTS(snum,value)

SerialEnableXON C Enables or disables XON flow control for the
specified port. A value of 1 enables and 0
disables it.

 SerialEnableXON(snum,value)

SerialClose C Closes the specified serial port.

 SerialClose(snum)

SerialClearBreak C Immediately clears the break signal on the
specified port without the need to call
SerialReset.

 SerialClearBreak(snum)

SerialFlushBuffer C Clears all of the data from the buffer of the
specified serial port.

 SerialFlushBuffer(snum)

SerialLeaveDTROnClose C Tells the serial port controller not to negate
Data Terminal Ready on closing it. This only has
an effect when the serial port is open.

 SerialLeaveDTROnClose(snum)

SerialPoll C Updates the properties of the specified serial
port and if any data is available then the serial
port data event will be triggered.

 SerialPoll(snum)

SerialReset C Resets the byte format and baud rate of the
specified port assuming that it is already open.

 SerialReset(snum)

SerialSetBreak C Immediately sets the break signal on the
specified serial port without the need to call
SerialReset.

 SerialSetBreak(snum)

SerialWrite C Writes the given text to the specified serial
port.

 SerialWrite(snum,text)

SerialTxWait C Waits until all data written to the specified serial
port by the SerialWrite command has been sent.

 SerialTxWait(snum)

SerialIdentityFN F Returns the identity of the serial port which
triggered the serial port event. After
interrogating this function its value is reset to
zero.

 Put SerialIdentityFN into snum

SerialErrorFN F Returns a non-zero value if a serial port error
occured. The non-zero value indicates which
port flagged an error event. After interrogating
this function its value is reset to zero.

 Put SerialErrorFN into snum

SerialPortCountFN F Returns the number of serial ports available on

the computer.

 Put SerialPortCountFN into nports

SerialPortNamesFN F Returns a list of serial port names on the
computer with each entry being on a separate
line. The list can then be searched for a
particular port name and if found then its line
number can be passed to the SerialSetPort
command prior to the port being opened.

 Put SerialPortNamesFN into portnames

SerialPortMaxSpeedsFN F Returns a list of the rated baud speeds of all
serial ports on the computer with each entry
being on a separate line.

 Put SerialPortMaxSpeedsFN into maxspeeds

SerialPortRatedSpeedsFN F Returns a list of the rated baud speeds of all
serial ports on the computer with each entry
being on a separate line.

 Put SerialPortRatedSpeedsFN into rspeeds

SerialPortInputDriversFN F Returns a list of Input driver names on the
computer with each name being on a separate
line.

 Put SerialPortInputDriversFN into dinNames

SerialPortOutputDriversFN F Returns a list of Output driver names on the
computer with each name being on a separate
line.

 Put SerialPortOutputDriversFN into doutNames

SerialOpenPortFN F Tries to open the specified serial port. If the
port was successfully opened then 1 is returned
otherwise 0.

 Put SerialOpenPortFN(snum) into okay

SerialPortStateFN F Returns whether the specified port is open or
closed. A value of 0 means closed, and 1 is
open.

 Put SerialPortStateFN(snum) into popen

SerialLookAheadFN F Returns all the characters from the buffer of the
specified port without deleting them.

 Put SerialLookAheadFN(snum) into stext

SerialReadBytesFN F Returns the specified number of characters from
the buffer of the specified port and then deletes
those characters from the buffer.

 Put SerialReadBytesFN(snum,nchars) into stext

SerialReadAllFN F Returns all the data in the buffer for the
specified port and then deletes all characters
from the buffer.

 Put SerialReadAllFN(snum) into stext

SerialCTSFN F Returns the state of the Clear To Send line for
the specified port.

 Put SerialCTSFN(snum) into ctsVal

SerialDCDFN F Returns the state of the Data Carrier Detect line
for the specified port.

 Put SerialDCDFN(snum) into dcdVal

SerialDSRFN F Returns the state of the Data Set Ready line for
the specified port.

 Put SerialDSRFN(snum) into dsrVal

SerialRIFN F Returns the state of the Ring Indicator for the
specified port.

 Put SerialRIFN(snum) into rival

SerialLastErrorFN F Returns the error state for the specified port. If
non-zero then an error occurred.

 Put SerialLastErrorFN(snum) into enum

SerialMacInRefFN F Returns the Macintosh In Driver reference
number for the specified port.

 Put SerialMacInRefFN(snum) into minnum

SerialMacOutRefFN F Returns the Macintosh Out Driver reference
number for the specified port.

 Put SerialMacOutRefFN(snum) into moutnum

SerialBaudFN F Returns the baud rate setting for the specified
port.

 Put SerialBaudFN(snum)

SerialDataBitsFN F Returns the number of data bits used for the
specified port.

 Put SerialDataBitsFN(snum) in to dbits

SerialParityFN F Returns the parity setting used for the specified
port.

 Put SerialParityFN(snum) into parity

SerialStopBitsFN F Returns the number of stop bits used for the
specified port.

 Put SerialStopBitsFN(snum) into sbits

24 Menus

HyperNext enables the programmer to create and modify their own menus. In Design
mode menus can be created and modifed using the Menu Designer which is available
via the Windows menu.

The menu designer in HyperNext Creator allows new menu titles and their associated
items to be created and edited. Each menu item has its own script and can also have
a command key associated with it.

At the current time each menubar has a default set of menu items. If they are not
required or are not suitable for the application or stack then they can be disabled at
runtime. When disabled a menu item is greyed out and cannot be selected by the
user.

Menu items can be referred to either by their name or else by both their menu title
number and menu item index. If referred to by name, HyperNext will search through
the menu bar titles and associated items until it finds the first matching name and
will ignore any later items having the same name. If referred to by index then they
will always be found, assuming that they exist.

Menu indexes start at zero, with the System menu having title index zero, the File
menu title index 1, and the Edit menu title index 2 etc.
For example, usually the first item on the File menu is the New item. To refer to the
New item use menu title index 2 and menu item 1.

When using the menu commands and functions, if the specified menu item does not
exist then no action will take place and the command will fail silently.

Name Type Description

MenuCallName C Calls the script associated with the specified

menu item name.

 MenuCallName(mname)

MenuCallNumber C Calls the script specified by both the menu title
number and menu item index.

 MenuCallNumber(mnumber,mindex)

MenuDisableName C Disables the specified menu item having the
specified name.

 MenuDisableName(mname)

MenuDisableNumber C Disables the menu item specified by both the
menu title number and menu item index.

 MenuDisableNumber(mnumber,mindex)

MenuEnableName C Enables the specified menu item having the
specified name.

 MenuEnableName(mname)

MenuEnableNumber C Enables the menu item specified by both the
menu title number and menu item index.

 MenuEnableNumber(mnumber,mindex)

MenuChangeName C Changes the name of the named menu item.

 MenuChangeName(oldname,newname)

MenuChangeNumber C Changes the name of the menu item specified by
both the menu title number and menu item index.

 MenuChangeName(mnumber,mindex,newname)

MenuTickName C Ticks the name of the named menu item.

 MenuTickName(name)

MenuTickNumber C Ticks the name of the menu item specified by
both the menu title number and menu item index.

 MenuTickNumber(mnumber,mindex)

MenuUnTickName C Unticks the name of the named menu item.

 MenuUnTickName(name)

MenuUnTickNumber C Unticks the name of the menu item specified by
both the menu title number and menu item index.

 MenuUnTickNumber(mnumber,mindex)

MenuChangeTitle C Changes the title of the menu specified by the
menu title number.

 MenuChangeTitle(mnumber,title)

MenuOverride C Allows the programmer to override actions for
items on the Edit menu and their associated
actions such as Copy, Cut, Paste. When set to 1
the actions will not take place and when 0 they
can happen. For instance, when 0 the Edit menu
can copy text from the clipboard into a field but

when overriden the text copy will not take place.

 MenuOverride(boolean)

MenuIDFN F Returns the title index of the menu item which
has just been triggered.

 Put MenuIDFN into field 1

MenuItemFN F Returns the item index of the menu item which
has just been triggered.

 Put MenuItemFN into field 1

MenuTitleCountFN F Returns the number of menu titles on the menu
bar.

 Put MenuTitleCountFN into field 1

MenuItemCountFN F Returns the number of menu items on the menu
specified by the title index.

 Put MenuItemCountFN(mnumber) into field 1

MenuTitleListFN F Returns a list of the titles on the menubar.

 Put MenuTitleListFN into field 1

MenuItemListFN F Returns a list of the menu item names located on
the menu specified by the title index.

 Put MenuItemListFN(mnumber) into field 1

MenuNameCountFN F Returns the number of menu items having the
specified name.

 Put MenuNameCountFN(name) into field 1

MenuNameExistsFN F Returns 1 if a menu item having the specified
name exists, otherwise it returns 0.

 Put MenuNameExistsFN(name) into field 1

MenuNumberExistsFN F Returns 1 if a menu item specified by the given
title index and item index exists, otherwise it
returns 0.

 Put MenuNumberExistsFN(mnumber,mitem) into
field 1

MenuNameEnabledFN F Returns 1 if a menu item having the specified

name is enabled, otherwise it returns 0.

 Put MenuNameEnabledFN(name) into field 1

MenuNumberEnabledFN F Returns 1 if a menu item specified by the given
title index and item index is enabled, otherwise it
returns 0.

 Put MenuNumberEnabledFN(mnumber,mitem)
into field 1

MenuNameTickedFN F Returns 1 if a menu item having the specified
name is ticked, otherwise it returns 0.

 Put MenuNameTickedFN(name) into field 1

MenuNumberTickedFN F Returns 1 if a menu item specified by the given
title index and item index is ticked, otherwise it
returns 0.

 Put MenuNumberTickedFN(mnumber,mitem) into
field 1

25 Registration

These Registration commands and functions make it easier for a HyperNext
programmer to create their own user registration scheme. When the HyperNext stack
or program is run then a user clicking the Register menu option will be offered a
dialog box where they can enter their registration information into the appropriate
fields.

The register dialog box holds ten fields where a user can enter their registration
details. These fields are name, address1, address2, address3, date and five serial
code fields. If the user presses the registration button then the data from these
fields will be placed into relevant variables and a registration script will be called so
that the data can be processed. However, if the user presses the cancel button then
no further actions will be taken.

In a simple registration scheme the following fields might be paired:

 Name - code 1
 Address 1 - code 2
 Address 2 - code 3
 Address 3 - code 4
 Date - code 5

where the Name data could be used to generate a serial for code 1 and if the user
enters the correct name and matching code then they will be accepted as valid.

The user data can be accessed using several HyperNext functions but for security
reasons once a function is called then its data is cleared so making it difficult for
anyone to access the data by peeking into memory.

The registration dialog box can display details of the software developer including
their name, web and email addresses. The background color of the dialog box can
also be specified. It is also possible to display a text value holding the time before
expiry or any other value specified by the program creator.

Name Type Description

RegSetWho C Sets the name of the software creator for

display in the registration dialog box.

 RegSetWho(value)

RegSetWeb C Sets the web address of the software creator
for display in the registration dialog box.

 RegSetWeb(value)

RegSetEmail C Sets the email address of the software creator
for display in the registration dialog box.

 RegSetEmail(value)

RegSetTime C Sets the remaining time for display in the
registration dialog box.

 RegSetTime(value)

RegSetColor C Sets the background color of the registration
dialog box. The color values are in the range 0
to 255, where zero is darkest and 255 is
lightest.

 RegSetColor(red,green,blue)

RegSetUser C Sets the user name to be displayed in the
program after the registration is complete. It
can have any text value.

 RegSetUser(value)

RegNameFN F Returns the text that the user entered into the
name field of the registration dialog.

 Put RegNameFN into rname

RegAddressFN F Returns the text that the user entered into the
specified address field of the registration dialog.
There are three address fields.

 Put RegAddressFN(1) into addr1
 Put RegAddressFN(2) into addr2
 Put RegAddressFN(3) into addr3

RegDateFN F Returns the text that the user entered into the
date field of the registration dialog.

 Put RegDateFN into dnum

RegCodeFN F Returns the text that the user entered into the
specified code field of the registration dialog.
There are five code fields.

 Put RegCodeFN(1) into code1
 Put RegCodeFN(2) into code2
 Put RegCodeFN(3) into code3
 Put RegCodeFN(4) into code4
 Put RegCodeFN(5) into code5

RegClearData C Clears all of the user data which was entered
into the fields and function memory via the
registration dialog.

 RegClearData

26 Encryption

These Blowfish keywords provide some basic encryption functionality enabling
messages to be securely sent over the internet. Note, the Blowfish functions operate
on blocks of text 8 bytes long therefore a text longer than this needs to be broken
into blocks.

The MD5 hash functions allow a user to verify if a received text or file has been
tampered with.

Name Type Description

BlowfishSetKey C Sets the key to be used by for encryption and

decryption.

 BlowfishSetKey(keytext)

BlowfishEncryptFN F Returns the passed text message in an
encrypted form.

 Put BlowfishEncryptFN(mess) into codedtext

BlowfishDecryptFN F Returns the passed encrypted text as readable
text.

 Put BlowfishDecryptFN(codedtext) into mess

MD5binFN F Returns the passed text in a binary(byte) form.
Note, the result should not be placed in a field
as the field formatting may corrupt the value.

 Put MD5binFN(mess) into hashtext

MD5hexFN F Returns the passed text in a hexadecimal form.
Note, the result can be placed in a field as the
result has a text format.

 Put MD5hexFN(mess) into hashtext

Blowfish example

 @ Encrypt
 BlowfishSetKey('1234567890')
 Put 'Hello' into mess
 Put BlowfishEncryptFN(mess) into codedmess

 @ Decrypt
 BlowfishSetKey('1234567890')
 Put BlowfishDecryptFN(codedmess) into newmess
 Message newmess

27 Receiving Emails (POP3)

This set of commands and functions allows a HyperNext program to communicate
with a POP3 mail server and allows emails plus their attachments to be received.

Note, several of these POP functions wait until either a response from the mail server
arrives or until timeout occurs. The timeout period is measured in 60ths of a second.

The general procedure for communicating with a POP3 mail server is

 1 - Login
 2 - Get email count
 3 - Receive any headers
 4 - Receive any emails and delete from server if required.
 5 - Logout

The headers specify who an email is from, its subject line, its sent date and its total
size including attachments.

Attachments can be saved using standard HyperNext file commands. Most image
attachments will be in Base64 format in which case they will need decoding before
being displayed or saved to a file.

Name Typ
e

Description

PopLoginFN F This function logs in to the POP3 mail server and

effectively locks the server until logout is
performed. It returns 1 if login was successful
otherwise it returns 0.

PopLoginFN(port,addr,uname,pword,encrypt,timeo
ut)

where
 port - server port, usually 110
 addr - server address
 uname - user name
 pword - user password
 encrypt - 1 for login encryption, 0 for no
encryption
 twait - time to wait for server response before
giving up

 @ Example Login to server
 Put

PopLoginFN(port,addr,uname,pword,encrypt,twait
) into res

PopCheckServerFN F This function returns 1 if the server is active and
awaiting commands, otherwise it returns 0.

 PopCheckServerFN(timeout)

 Put PopCheckServerFN(200) into res

PopCountFN F Asks the server for the number of emails it is
holding.

 PopCountFN(timeout)

 Put PopCountFN(200) into emailCount

PopRollbackFN F Asks the server to reset its state to that
immediately after login. This command is useful
when emails have been deleted and need
restoring. If the rollback was successful then the
function will return 1 otherwise it will return 0.

 PopRollbackFN(timeout)

 Put PopRollbackFN(200) into res

PopDisconnectFN F Asks the server to disconnect or logout. If the
logout response is received from the server then
the function will return 1 otherwise it will return 0.
Note, Before quitting, HyperNext always closes
the connection with the mail server so as to
prevent the server being locked.

 PopDisconnectFN(timeout)

 Put PopDisconnectFN(200) into res

PopErrorCodeFN F This can be used to see if the mail server
responded with an error. A response of 0 indicates
no error. Related functions are
PopErrorMessageFN and PopErrorMessageIDFN.
This function is reset to 0 after being called.

 Put PopErrorCodeFN into res

PopErrorMessageFN F Gives the error message sent by the mail server.
This function is cleared after being called.

 Put PopErrorMessageFN into field 1

PopErrorMessageIDFN F Gives the error message number sent by the mail

server. This function is cleared after being called.

 Put PopErrorMessageIDFN into field 2

PopSendCommandFN F This function allows special commands to be sent
to the mail server. If successful then the function
will return 1 otherwise it will return 0.

 PopSendCommandFN(cmd,timeout)

 Put PopSendCommandFN(cmd,600) into res

PopCommandReplyFN F Returns any reply from the mail server in respone
to the PopSendCommandFN function. This
function is cleared after being called.

 Put PopCommandReplyFN into reply

PopCommandDataFN F Returns any data from the mail server in response
to the PopSendCommandFN function. This
function is cleared after being called.

 Put PopCommandDataFN into data

PopGetHeadersFN F This function asks the mail server to send any
headers. If successful the function returns 1
otherwise it returns 0.
There is one header for each email and the
headers help decide whether an email should be
retrieved or just deleted. The header information
can be accessed using the following functions:-
PopFromListFN, PopSubjectListFN, PopDateListFN
and PopSizeListFN.
 Note, the timeout depends upon the expected
maximum time needed to retrieve the emails.

 PopGetHeadersFN(timeout)

 Put PopGetHeadersFN(600) into headers

PopFromListFN F Returns in list form the FROM addresses of the
emails. Line 1 is for email number 1 and so on.

 PopFromListFN

 Put PopFromListFN into fromList

PopSubjectListFN F Returns in list form the SUBJECT lines of the
emails. Line 1 is for email number 1 and so on.

 PopSubjectListFN

 Put PopSubjectListFN into subjectList

PopDateListFN F Returns in list form the DATES of the emails. Line
1 is for email number 1 and so on.

 PopDateListFN

 Put PopDateListFN into dateList

PopSizeListFN F Returns in list form the size of each email. Line 1
is for email number 1 and so on. The size is in
bytes and indicates whether the email has an
attachment or not. The only way of knowing
whether an email has an attachment is to retreive
it.

 PopSizeListFN

 Put PopSizeListFN into sizeList

PopGetEmailFN F This fetches the email with the specified identity
from the mail server. If successful it returns 1 else
it returns 0.

 PopGetEmailFN(id,timeout)

 Put PopGetEmailFN(3,600) into res

PopDeleteEmailFN F This deletes the email with the specified identity
from the mail server. If successful it returns the
identity of the deleted email else it returns 0.

 PopDeleteEmailFN(id,timeout)

 Put PopGetEmailFN(3,600) into res

PopBodyPlainFN F This returns the plain text body of the last
retrieved email. if it returns empty then the email
had no plain text body although it might have a
rich text or HTML body.

 PopBodyPlainFN

 Put PopBodyPlainFN into txt

PopBodyRichFN F This returns the rich text body of the last
retrieved email. if it returns empty then the email
had no rich text body.

 PopBodyRichFN

 Put PopBodyRichFN into txt

PopBodyHTMLFN F This returns the HTML body of the last retrieved
email. if it returns empty then the email had no
HTML body.

 PopBodyHTMLFN

 Put PopBodyHTMLFN into txt

PopBodySourceFN F This returns the complete source contents of the
last retrieved email. The contents can include
headers, body texts and attachments all joined
together.

 PopBodySourceFN

 Put PopBodySourceFN into txt

PopAttachmentCountFN F This returns the number of attachments for the
last retrieved email. Each attachment can be
accessed using an integer identity starting at 1.

 PopAttachmentCountFN

 Put PopAttachmentCountFN into numAtts

PopAttachmentNameFN F This returns the name of the specified attachment
for the last retrieved email.

 PopAttachmentNameFN(aid)

 Put PopAttachmentNameFN(1) into name

PopAttachmentEncodingFN F This returns the encoding of the specified
attachment for the last retrieved email. If the
attachment is an image it is usually encoded with
Base64 encoding.

 PopAttachmentEncodingFN(aid)

 Put PopAttachmentEncodingFN(1) into encoding

PopAttachmentDataFN F This returns the data of the specified attachment
for the last retrieved email. This data may be an
encoded image, sound, movie or perhaps just a
text. This data can be processed and saved in a
file using the relevant HyperNext file commands.

 PopAttachmentDataFN(aid)

 Put PopAttachmentDataFN(1) into data

PopAttachmentMacTypeFN F This returns the Macintosh Type of the specified
attachment for the last retrieved email.

 PopAttachmentMacTypeFN(aid)

 Put PopAttachmentMacTypeFN(1) into mtype

PopAttachmentMacCreator
FN

F This returns the Macintosh Creator of the
specified attachment for the last retrieved email.

 PopAttachmentMacCreatorFN(aid)

 Put PopAttachmentMacCreatorFN(1) into mcret

PopAttachmentMimeFN F This returns the Mime type of the specified
attachment for the last retrieved email.

 PopAttachmentMimeFN(aid)

 Put PopAttachmentMimeFN(1) into mimetype

PopOneFromFN F Returns the FROM address of the specified email.

 PopOneFromFN(mid)

 Put PopOneFromFN(6) into fromaddr

PopOneSubjectFN F Returns the SUBJECT line of the specified email.

 PopOneSubjectFN(mid)

 Put PopOneSubjectFN(6) into subject

PopOneDateFN F Returns the DATE of the specified email. This date
can be quite a complex string.

 PopOneDateFN(mid)

 Put PopOneDateFN(6) into datetxt

PopOneSizeFN F Returns the SIZE of the specified email in bytes.

 PopOneSizeFN(mid)

 Put PopOneSizeFN(6) into size

PopClearEmail C This clears the last email from memory and frees
up space used by its bodies and attachments.

 PopClearEmail

28 Sending Emails (SMTP)

Managing the sending of emails is much easier than that of receiving them. Emails are
sent using the HyperNext SMTP commands and functions. The program just needs to
create an email, connect to the server, send the email and then disconnect.

Server login is not usually necessary because most email servers are provided by the
user host Internet Service Provider. Note, that the SMTP and POP3 mail servers are
unrelated.

Name Typ
e

Description

EmailSetServer C This command does not make the connection to the

mail server it just provides the necessary details so
that the EmailSendFN function can itself connect to
the server.

 EmailSetServer(port,addr,uname,pword)

where
 port - server port, usually 25
 addr - server address
 uname - user name, not usually needed
 pword - user password, not usually needed

EmailDisconnect C This disconnects from the mail server.

 EmailDisconnect

EmailCancelSend C This command cancels any pending email transmission.

 EmailCancelSend

EmailCreateNew C Creates a new blank email with no attachments.

 EmailCreateNew

EmailSetBodyPlain C This sets the plain text body of the email.

 EmailSetBodyPlain(text)

EmailSetBodyRich C This sets the rich text body of the email.

 EmailSetBodyRich(text)

EmailSetBodyHTML C This sets the HTML text body of the email.

 EmailSetBodyHTML(text)

EmailSetFrom C This sets the FROM address of the email.

 EmailSetFrom(text)

EmailSetSubject C This sets the SUBJECT line of the email.

 EmailSetSubject(text)

EmailSetHeader C This sets the header of the email. A header is often
used to identify the email client and has two part:- the
header name and the header value.

 EmailSetHeader(hname,hvalue)

EmailSetTo C This sets the TO address of the email. If more than
one address is required then the addresses should be
given in standard HyperNext list form.

 EmailSetTo(textlist)

EmailSetToCC C This sets the TO CC addresses of the email. If more
than one address is required then the addresses
should be given in standard HyperNext list form. Using
ToCC lets the recipients see who else received the
email.

 EmailSetToCC(textlist)

EmailSetToBCC C This sets the TO BCC addresses of the email. If more
than one address is required then the addresses
should be given in standard HyperNext list form. Using
ToBCC prevents the recipients seeing who else
received the email.

 EmailSetToCC(textlist)

EmailAttach C This attaches a local file such as text or graphic to the
email. Note, if an image is to be sent then its file
should be encoded with Base64 before its
filename/path is given otherwise the file will probably
be corrupted during tranmission.

EmailAttach(fname,name,encoding,MacT,MacC,Mime)

 where
 fname - the file to send
 name - the name the recipient sees

 encoding - any encoding used such as Base64
 MacT - the MacType of the attachment, if any
 MacC - the MacCreator of the attachment, if any
 Mime - the MIME or multimedia type.

If a parameter is not used just pass an empty string in
its place.

EmailAttachAbs C This attaches a file specified by an absolute file path.
Note, if an image is to be sent then its file should be
encoded with Base64 before its filename/path is given
otherwise the file will probably be corrupted during
tranmission.

EmailAttachAbs(fpath,name,encoding,MacT,MacC,Mim
e)

 where
 fpath - the path to the file
 name - the name the recipient sees
 encoding - any encoding used such as Base64
 MacT - the MacType of the attachment, if any
 MacC - the MacCreator of the attachment, if any
 Mime - the MIME or multimedia type.

If a parameter is not used just pass an empty string in
its place.

EmailSendFN F This function connects to the server and sends the
built email waiting either until the server responds or
until a timeout occurs. It returns 1 if successful
otherwise 0.
 If a very large email is to be sent then a longer
timeout should be specified because the function
might timeout and report failure even though the
email is later sent successfully.

 EmailSendFN(timeout)

 Put EmailSendFN(600) into res

EmailServerResponseF
N

F This function returns the message sent by the server
when the connection was first made.

 EmailServerResponseFN

 Put EmailServerResponseFN into mess

EmailConnectedFN F This function returns 1 if the server connection still
exists otherwise it returns 0.

 EmailConnectedFN

 Put EmailConnectedFN into res

EmailSocketErrorFN F This function 0 if no connection error occurred
otherwise it returns 1. A connection error will occur if
the given server name does not exist.

 EmailSocketErrorFN

 Put EmailSocketErrorFN into res

EmailErrorCodeFN F This function returns the error code as reported by
the server . If no error occured it returns 0. The error
code is cleared after the value is returned.

 EmailErrorCodeFN

 Put EmailErrorCodeFN into res

EmailErrorMessageFN F This function returns the error message as reported
by the server . If no error occured it returns an empty
string. The error message is cleared after the value is
returned.

 EmailErrorMessageFN

 Put EmailErrorMessageFN into errmess

EmailFindAddressesFN F This takes a block of text and attempts to return
email addresses in list form. It uses the specified start
and end separators in searching for the addresses.
Email addresses in the FROM section of an email are
ofter separated by '<' and '>' as in
'<help@apple.com>'. This is useful in finding the FROM
address when replying to an email.

 EmailFindAddressesFN(txt,sep1,sep2)

 Put EmailFindAddressesFN(txt,sep1,sep2) into
addrlist

29 USB HID Comms

These commands and function give some basic support for USB communications with
HIDs (Human Interface Devices). HIDs are devices such as mice, joysticks and certain
electronics units have a maximum data rate of 64KB/sec.

USB HIDs are identified to software by a number of attributes. They should provide at
least their Product and Vendor numbers. Other attributes are Manufacturer, Product
Information, Version and Serial number. HyperNext provides these attributes in the
form of lists so that the relevant connected devices can be found. HyperNext also
tries to produce a unique hash code for each device that is useful in rapidly searching
the lists.

To interact with these devices follow these steps:-

 1. Find all connected devices --> a list of attributes
 2. Select device using Product Vendor ID attributes
 3. Connect to device
 4. Communicate with device
 5. Disconnect from device.

Note, USB supports hot plugging whereby devices can be plugged in and out while
the computer is running. HyperNext caters for this. Difficulties can arise though if
several devices having identical identifier attributes are plugged and unplugged
because HyperNext has no way of knowing which device is which.

Note, Vendor and Product IDs are expected to be in decimal although in the literature
they are often specified in Hexadecimal. Just use the HexFN function if conversion is
necessary.

Name Typ
e

Description

USBResetFN F This function clears all connections including the USB

data lists and then returns the number of devices that it
disconnected.

 USBResetFN

 Put USBResetFN into num

USBFindAllFN F This function scans the USB ports for all devices and
builds up the lists of device attributes. It returns the
number of devices found.

 USBFindAllFN

 Put USBFindAllFN into dcount

USBCountFN F Simply returns the number of devices attached to the
ports. It is much faster than the USBFindAllFN function
because it does not build any lists.

 USBCountFN

 Put USBCountFN into dcount

USBUniquesFN F This function uses the device hashes to return the
number of unique device types. If there are ten devices
attached to the ports but 6 have identical attributes
then this function will return the value 5.

 USBUniquesFN

 Put USBUniquesFN into num

USBGetSingleDeviceFNF
N

F This function returns the device number for a single
device matching the passed criteria. It should be used
when only one device matching the criteria is likely to be
attached to the ports. If no matching device is found
then the function returns 0.
The device number returned can then be used to
connect and communicate with the device. If some
criteria are not needed then an empty string can be
passed in their place.
Note, when other devices are plugged or unplugged from
the ports the scan list positions can change but the
device number provided by this functions preserves a
link to the required device.

USBGetSingleDeviceFN(vend,prod,man,prodinfo,version,s
erial,hash)

 where
 vend - Vendor ID
 prod - Product ID
 man - Manufacture string
 prodinfo - Product Info
 version - Version number
 serial - device serial number
 hash - device hash string

 Put
USBGetSingleDeviceFN(vend,prod,man,prodinfo,version,s
erial,hash) into devID

USBGetMatchingDevi
cesFN

F This function returns a list of all devices matching the
passed criteria. It should be used when several similar

devices are expected to be attached to the ports. If no
matching device is found then the function returns an
empty list.
The device numbers returned can then be used to
connect and communicate with the device.
If some criteria are not needed then an empty string can
be passed in their place.

USBGetMatchingDevicesFN(vend,prod,man,prodinfo,versi
on,serial,hash)

 where
 vend - Vendor ID
 prod - Product ID
 man - Manufacture string
 prodinfo - Product Info
 version - Version number
 serial - device serial number
 hash - device hash string

 Put
USBGetMatchingDevicesFN(vend,prod,man,prodinfo,versi
on,serial,hash) into devList

USBValidFN F This function returns 1 if the passed USB device ID
number is valid and 0 otherwise.

 USBValidFN(uid)

 Put USBValidFN(5) into okay

USBConnectFN F This function tries to connect to the specified USB
device and returns 1 if successful and 0 otherwise. If the
device does not exist it returns an empty value.

 USBConnectFN(uid)

 Put USBConnectFN(5) into okay

USBConnectedFN F This function returns 1 if the specified USB device is
connected and 0 if not connected. If the device does not
exist it returns an empty value.

 USBConnectedFN(uid)

 Put USBConnectedFN(5) into res

USBDisconnectFN F This function tries to disconnect the specified USB
device and returns 1 if successful and 0 otherwise. If the
device does not exist it returns an empty value.

 USBDisconnectFN(uid)

 Put USBDisconnectFN(5) into res

USBLastErrorFN F This function returns the last error for the specified USB
device. If no error occured it returns 0. If the device
does not exist it returns an empty value. Error numbers
are Operating System specific. The error value is reset to
zero after being read.

 USBLastErrorFN(uid)

 Put USBLastErrorFN(5) into enum

USBVendorFN F This function returns the Vendor ID for the specified USB
device number. If the device does not exist it returns an
empty value.

 USBVendorFN(uid)

 Put USBVendorFN(5) into vid

USBProductFN F This function returns the Product ID for the specified
USB device number. If the device does not exist it
returns an empty value.

 USBProductFN(uid)

 Put USBProductFN(5) into pid

USBManufacturerFN F This function returns any Manufacturer string for the
specified USB device number. If the device does not
exist it returns an empty value.

 USBManufacturerFN(uid)

 Put USBManufacturerFN(5) into manstr

USBProductInfoFN F This function returns any Product Information string for
the specified USB device number. If the device does not
exist it returns an empty value.

 USBProductInfoFN(uid)

 Put USBProductInfoFN(5) into pinfo

USBVersionFN F This function returns any Version string for the specified
USB device number. If the device does not exist it
returns an empty value.

 USBVersionFN(uid)

 Put USBVersionFN(5) into vers

USBSerialFN F This function returns any Serial Number string for the
specified USB device number. If the device does not
exist it returns an empty value. Note, the serial number
is made up from byte values in the range 0 to 255 and
so must be decoded using HyperNext byte functions if it
is to display correctly.

 USBSerialFN(uid)

 Put USBSerialFN(5) into sernum

USBHashFN F This function returns the hash string for the specified
USB device number. If the device does not exist it
returns an empty value.

 USBHashFN(uid)

 Put USBHashFN(5) into hash

USBVendorListFN F This function returns the list of Vendor IDs for the
attached devices.

 USBVendorListFN

 Put USBVendorListFN into vlist

USBProductListFN F This function returns the list of Product IDs for the
attached devices.

 USBProductListFN

 Put USBProductListFN into plist

USBManufacturerList
FN

F This function returns the list of Manufacturer strings for
the attached devices.

 USBManufacturerListFN

 Put USBManufacturerListFN into manlist

USBProductInfoListF
N

F This function returns the list of Product Information
strings for the attached devices.

 USBProductInfoListFN

 Put USBProductInfoListFN into pinfolist

USBVersionListFN F This function returns the list of Version strings for the
attached devices.

 USBVersionListFN

 Put USBVersionListFN into verlist

USBSerialListFN F This function returns the list of Serial Number strings for
the attached devices.

 USBSerialListFN

 Put USBSerialListFN into serist

USBHashListFN F This function returns the list of Hash strings for the
attached devices.

 USBHashListFN

 Put USBHashListFN into pinfolist

USBReadFN F This function tries to read a message string of the
requested length from the specified USB device. It
returns the message, if any.

 USBReadFN(uid,length)

 Put USBReadFN(5,9) into mess

USBWriteFN F This function tries to send a message to the specified
USB device. It returns the number of bytes actually
sent.

 USBWriteFN(uid,message)

 Put USBWriteFN(5,mess) into num

30 LightStone Bio-feedback

The LightStone is a USB HID biofeedback device that monitors heart rate and skin
resistance. It is comes with the Wild Divine meditation and games software.

A HyperNext program can read and display the data simultaneously from several
LightStone devices using both inbuilt generic USB functions or some HyperNext
LightStone functions. The LightStone functions are optimised and much faster than
HyperNext script. Speed is important because the LightStone sample rate is 30HZ.

These LightStone functions also allow some warnings for heart rates exceeding
predefined ranges and for adjusting the heart rate peak detection algorithm.

The steps for using a LightStone device are:-

 1. Find the device using Vendor Product IDs
 2. Connect to it.
 3. Reset the device data structures
 4. Retrieve and make a data sample
 5. Read a heart value and heart rate
 6. Read a skin value
 7. Goto step 4
 8. When finished disconnect device

Name Type Description

LStoneResetFN F This function resets the channel and associated

data structures for a specific LightStone device.
If successful it returns 1 otherwise 0. If the
device does not exist it returns an empty value.

 LStoneResetFN(id)

 Put LStoneResetFN(2) into res

LStoneHeartSetLeakFN F This function set the leakage parameter of the
heart rate detection algorithm for the specified
LightStone device. If successful it returns 1. If
the device does not exist it returns an empty
value.
 A leakage parameter is necessary because the
DC level of the heart signal from a LightStone
device can change so making peak detection
less reliable. The leakage value starts at a
default value of 0.01 and the effect of changing
it can be monitored using the
LStoneHeartTrackFunction. If the leakage is too
low then peaks can be missed and if too high

false peaks can be registered.

 LStoneHeartSetLeakFN(id,value)

 Put LStoneHeartSetLeakFN(1,0.02) into res

LStoneHeartSetRangeFN F This function set the acceptable ranges the
heart rate detection monitor for the specified
LightStone device. If successful it returns 1 but
if the values are out of range such as -ve it
returns 0. If the device does not exist it returns
an empty value.

The default range is 40 to 240 beats per
minute.

 LStoneHeartSetRangeFN(id,low,high)

 Put LStoneHeartSetRangeFN(1,60,90) into res

LStoneHeartResetFN F This function resets the heart peak detection
algorithm for the specified LightStone device. If
successful the function returns 1 otherwise 0. If
the device does not exist it returns an empty
value.

 LStoneHeartResetFN(id)

 Put LStoneHeartResetFN(1) into res

LStoneMakeSampleFN F This function reads in a data sample from the
device and produces readings for heart value,
heart rate, heart peak and skin resistance value.
These values can then be read by the relevant
functions. If successful the function returns 1
otherwise 0. If the device does not exist it
returns an empty value.

 LStoneMakeSampleFN(id)

 Put LStoneMakeSampleFN(id) into res

LStoneSkinValueFN F This function returns the skin resistance value
reading for the last sample. If the device does
not exist it returns an empty value.
The range is roughly between 190 to 500
although it depends upon the person being
monitored and their physical condition such as
having poor circulation or being cold. In terms of
relaxation, lower values mean more relaxed.

 LStoneSkinValueFN(id)

 Put LStoneSkinValueFN(1) into skinval

LStoneHeartValueFN F This function returns the heart value reading for
the last sample. If the device does not exist it
returns an empty value.
The range is roughly between 1200 to 3200
although it depends upon the person being
monitored. This value is the basis for the heart
rate measurement and peak detection.

 LStoneHeartValueFN(id)

 Put LStoneHeartValueFN(1) into heartval

LStoneHeartRateFN F This function returns the heart rate reading in
beats per minute for the last sample. If the
device does not exist it returns an empty value.

 LStoneHeartRateFN(id)

 Put LStoneHeartRateFN(1) into heartrate

Note, this function works in conjunction with the
LStoneHeartSetRangeFN function as follows:-
 = 0 - no heart rate
 = -1 - heart rate out of range too low
 = -2 - heart rate out of range too high
 = otherwise the in range heart rate

LStoneHeartTrackFN F This function returns a track value releated to
the heart value reading and leakage for the last
sample. If the device does not exist it returns
an empty value. It can be plotted to see if peaks
are being missed or false peaks being
recognised.

 LStoneHeartTrackFN(id)

 Put LStoneHeartTrackFN(1) into htrack

LStoneHeartPeakFN F This function returns 1 when a heart peak
occured in the last sample otherwise it returns
0. If the device does not exist it returns an
empty value.
This can be used to sound a beep or trigger
some other code when a heart peak occurs.

 LStoneHeartPeakFN(id)

 Put LStoneHeartPeakFN(1) into hpeak

LStoneSetVersionFN F This function sets the sampling version to be
used for the specified LightStone device. It
returns 1 when successful or 0 otherwise. If the
device does not exist it returns an empty value.

Currently there are two versions, namely 1 and
2. However, as different LightStone versions
become available then other sampling versions
may be required. Version 1 is default and gives
out a wider range of skin values than version 2.

 LStoneSetVersionFN(id,version)

 Put LStoneSetVersionFN(5,2) into res

End of Guide
